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Abstract— We here propose an efficient elliptic curve Diffie–Hellman two-party key agreement protocol using public key authentication. In this paper, We present an improved version of that protocol which can withstand stronger attacks. The new protocol’s performance is has enhanced the same remarkable list of security properties.
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I. INTRODUCTION

Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.)Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in public-key cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, high-speed software and hardware implementations, and offer the highest strength-per-key-bit of any known public-key scheme.
Since the introduction of the concept of public-key cryptography by Whit Diffie and Martin Hellman in 1976, the cryptographic importance of the apparent intractability of the well-studied discrete logarithm problem has been recognized. Taher ElGamal first described how this problem could be utilized in public-key encryption and digital signature schemes. ElGamal's methods have been refined and incorporated into various protocols to meet a variety of applications, and one of its extensions forms the basis for the U.S.government digital signature algorithm (DSA). We present an improved version of that protocol which can withstand stronger attacks.

II.BASICS OF NUMBER THEORY

Number theory is the branch of pure mathematics concerned with the properties of numbers in general, and integers in particular, as well as the wider classes of problems that arise from their study.
Number theory plays an very important role in cryptography. Prime number, Prime factorization, discrete logarithm are very important weapons of cryptography.
We here introduce some of the concepts of number theory that we will be requiring in future.

• Why do we need primality testing?

– Essentially all public key cryptographic algorithms use large prime numbers

– We therefore need an algorithm for prime number generation 

Trial division:-

– Try to divide x by every prime integer smaller than(sqrt(x)).

– Infeasible for large x.

Fermat’s theorem: -

if x is prime then for all 1< a < x it holds that a^(x-1) = 1 mod x. 

• If we can find an a s.t a^(x-1)!= 1 mod x, x is surely composite. 

– Surprisingly, the converse is almost always true, and for a large percentage of the choices of a.

The Miller-Rabin test:-

1. Write x-1=2^c*r for an odd r. set comp=0.

2. For i=1 to T

• Pick random a in [1,x-1]. If gcd(a,x)> 1 set comp=1.

• Compute y[0]=a^r mod x, y[i]=y[i-1]^2 mod x for i=1..c. If y[c]=1, or there exist such i that, y[i]=1,         y[i-1]!=+1or-1, set comp=1.

3. If comp=0 return PRIME, else COMPOSITE.

T trials give the wrong answer with probability   < (1/4)^T. 

Totient function ((n):-

Number of positive integers less than n and relatively prime to n 

III. BASICS OF GROUP THEORY

We begin by introducing some basic mathematical terminology. A group is an abstract mathematical object consisting of a set G together with an operation * defined on pairs of elements of G; The order of the group is the number of elements in G. The operation must have certain properties, similar to those with which we are familiar from ordinary integer arithmetic. For example, the integers modulo n, namely =n = { 0, 1, 2, . . . , n - 1 }, forms a group under the operation of addition modulo n. If p is a prime number, then the non-zero elements of =p, namely= p* = {1, 2, . . . , p -1}, forms a group under the operation of multiplication modulo p. The order of a group element g Î G is the least positive integer n such that gn = 1. For example, in the group =11* , the element g = 3 has order 5, since

31 º 3 (mod 11),

32 º 9 (mod 11),

33 º 5 (mod 11),

34 º 4 (mod 11), and

35 º 1 (mod 11).
In abstract algebra, a finite field or Galois field (so named in honor of Évariste Galois) is a field that contains only finitely many elements. Finite fields are important in number theory, algebraic geometry, Galois theory, cryptography, and coding theory.
An abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on their order (the axiom of commutativity).
In mathematics and abstract algebra, a finite group is a group whose underlying set G has finitely many elements.

Modulo group is efficiently used in cryptography because of bandwidth savings, and faster implementations. These features are especially attractive for security applications where computational power and integrated circuit space is limited, such as smart cards, PC cards, and wireless devices. Such is the case with elliptic curve groups, which were first proposed for cryptographic use independently by Neal Koblitz and Victor Miller in 1985.

IV. ELLIPTIC CURVE METHOD

Let K be a field with characteristic different from 2; 3. For example, K = Zq with a prime q > 3, which is a set of integers with addition and multiplication (mod q). An elliptic curve E over K is defined as a set of points (X; Y ) 2 K2 satisfying Y2 = X3 + AX + B; where A;B are constants together with a special point called “the point at infinity” and denoted O. Two points P = (xP ; yP) and Q=(xQ;yQ) can be added together to give a third point R = P +Q = (xR; yR), where xR = f1(xP ; yP ; xQ; yQ)

and yR = f2(xP ; yP ; xQ; yQ) for some K-rational functions f1 and f2. The point at infinity, O, is an identity element of this operation, i.e., P + O = P = O + P. Points of the curve E (including the point at infinity) together with aforementioned addition form a group, which is denoted by E(K). The representation of elliptic curve points using two coordinates P = (xP ; yP ) is called the affine representation. In order to increase the computational efficiency of point addition, one may prefer the representation of E in homogeneous (projective) coordinates of E,
 Y2 = X3 + AX + B.

If Z = 0, then we have the point at infinity O which is represented by (0; 1; 0) in projective coordinates. Montgomery [2] studied elliptic curves of the form,: y2 = x3 + ax2 + x, to further speed up elliptic curve operations in software and hardware. This form is obtained by the change of variables, 
X = 3x+a3b ;

Y = yb ;

A =3/a2 +3b2;

B = 2a3/9a+27b3  .Using the above form of elliptic curves, Montgomery derived an addition formula for P and Q which does not need any y-coordinate information, assuming that the difference P  Q is already known. Let N be a composite integer we want to factor. The ECM Method considers elliptic curves in Montgomery form, given in Eq. 2, and involves elliptic curve operations (mod N), where the elements in Z are reduced (mod N). Since N is not a prime, E over ZN is not really an elliptic curve but we can still do point additions and doublings as if ZN was a field.
V. OPERATIONS ON AN ELLIPTIC CURVE 
Scalar multiplication, kP, is a basic elliptic curve operation used in the ECM method. It is also a fundamental operation of a majority of Elliptic Curve Cryptosystems [10], and therefore it has been studied extensively in the past from the point of view of efficient implementations in software and hardware. Scalar multiplication is defined as an addition, kP = P + … + P (k times), where k is an integer and P is a point on an elliptic curve. An efficient algorithm for computing scalar multiplication was proposed by Montgomery [2] in 1987, and is known as the Montgomery ladder algorithm. This algorithm is applicable to any curve, and is independent of the point representation, i.e., it can be executed in both affine and projective coordinates. However, it is especially useful when an elliptic curve is expressed in Montgomery form (see Eq. 2), in projective coordinates. In this case, all intermediate computations can be carried on using only x and z coordinates, and the y-coordinate of the result can be retrieved (if needed) from the x and z coordinates of the final point. In the ECM method, the y-coordinate of the result is not needed, so this final computation is unnecessary. 

VI. DISCRETE LOGARITHM  PROBLEM

The discrete logarithm problem, as first employed by Diffie and Hellman in their key agreement protocol, was defined explicitly as the problem of finding logarithms in the group = p* :given an element g Î = p * of order n, and given h Î= p * , find an integer x, 0 £ x £ n - 1, such that gx º h (mod p), provided that such an integer exists. The integer x is called the discrete logarithm of h to the base g. For example, consider p = 17. Then g = 10 is an element of order n = 16 in =17 * . If h = 11, then the discrete logarithm of h to the base g is 13 because 1013 º 11 (mod 17). These concepts can be extended to arbitrary groups. Let G be a group of order n, and let a be an element of G. The discrete logarithm problem for G is the following: given elements a and b Î G, find an integer x, 0 £ x £ n - 1, such that ax = b, provided that such an integer exists. For two primary reasons, a variety of groups have been proposed for cryptographic use. First, the operation in some groups may be easier to implement in software or in hardware than the operation in other groups. Second, the discrete logarithm problem in the group may be harder than the discrete logarithm problem in = p*. Consequently, one could use a group G that is smaller than = p* while maintaining the same level of security. This results in smaller key sizes, 
VII.CONCEPT OF PRIMITIVE ELEMENT
In field theory, a branch of mathematics, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field, which is necessarily cyclic. The minimal polynomial of a primitive element is a primitive polynomial. A field extension L/K is called a simple extension if there exists an element θ in L with

    L = K(θ).

The element θ is called a primitive element, or generating element, for the extension; we also say that L is generated over K by θ.

A primitive element of a finite field is a generator of the field's multiplicative group. When said at greater length: In the realm of finite fields, a stricter definition of primitive element is used. The multiplicative group of a finite field is cyclic, and an element is called a primitive element if and only if it is a generator for the multiplicative group. The distinction is that the earlier definition requires that every element of the field be a quotient of polynomials in the primitive element, but within the realm of finite fields the requirement is that every nonzero element be a pure power.
VIII. PRIMITIVE ROOTS MODULO n

In modular arithmetic, a branch of number theory, a primitive root modulo n is any number g with the property that any number co-prime to n is congruent to a power of g modulo n. In other words, g is a generator of the multiplicative group of integers modulo n. That is, if g is a primitive root modulo n, then for every integer a with gcd(a, n) = 1, there is an integer k such that gk ≡ a (mod n). Such k is called the index or discrete logarithm of a to the base g modulo n.

VIII. DIFFIE-HELLMAN USING PRIMITIVE ROOTS

This section specifies the Diffie-Hellman primitive that shall be used by the key establishment schemes in this Standard. This primitive derives a shared secret value from one entity’s secret key and another entity’s public key when the keys share the same EC parameters. If two entities both correctly execute this primitive with corresponding keys as inputs, they will produce the same value.

The calculation of the shared secret value incorporates co-factor multiplication. Co-factor multiplication is computationally efficient and helps to prevent security problems like small subgroup attacks (see [42].)The shared secret value shall be calculated as follows:
Prerequisites: The prerequisite is a set of EC domain parameters q, a, b, G, n, and h, along with an indication of the basis used if q=2m, which has been validated using the techniques.

Input: The Diffie-Hellman primitive takes as input:
1. an EC private key d.
2. an EC public key Q.
The public key Q will have been validated.

Actions: The following actions are taken:

1.Compute the point P=hdQ. 
2.Check P¹2. If P=2, output ‘invalid’ and stop.

3.Set z=xP, where xP is the x-coordinate of P.
Output: zÎFq as the shared secret value.
X. DIFFIE-HELLMAN USING ELLIPTIC CURVES

Elliptic curve Diffie–Hellman (ECDH) is a key agreement protocol that allows two parties, each having an elliptic curve public-private key pair, to establish a shared secret over an insecure channel. This shared secret may be directly used as a key, or better yet, to derive another key which can then be used to encrypt subsequent communications using a symmetric key cipher. It is a variant of the Diffie–Hellman protocol using elliptic curve cryptography.
XI. A VISION TOWARDS IMPROVEMENT OF ELLIPTIC CURVES DIFFIE-HELLMAN PROTOCOL

In future we are looking to optimize the elliptic curve Diffie-Hellman Algorithm on lines of MQV (Menezes–Qu–Vanstone) or the algorithm proposed by Strangio. Our main objective in it is to make breaking of elliptic curve more and more difficult. The standard algorithms which exist in todays world to break elliptic curve discrete logarithm problem are Baby-step giant-step, Pollard’s rho algorithm for logarithms,Pohlig-Hellman algorithm,Number field sieve, Function field sieve. Here we try to find algorithm which makes breaking the discrete logarithm problem by any of these algorithms more difficult by wisely choosing the index and sometimes combination of multiple indices.

XII. CONCLUSIONS
In this paper we have found that ECDH protocol is still weak has scope for improvement. There have been some efforts to optimize it past. We look to study them and optimize it further. We are trying to present an improved protocol that can withstand such attacks and achieves overall performance. Future work includes formally proving the security of the protocol in a model of distributed computing 
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