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ABSTRACT

In many applications of similarity searching in databases, a
set of similar queries appear more frequently. Since it is rare
that a query point with its associated parameters (range or
number of nearest neighbors) will repeat exactly, intelligent
caching mechanisms are required to efficiently answer such
queries. In addition, the performance of non-repeating and
non-cached queries should not suffer too much either. In this
paper, we propose RCached-tree, belonging to the family of
R-trees, that aims to solve this problem. In every internal
node of the tree up to a certain level, a portion of the space is
reserved for storing popular queries and their solutions. For
a new query that is encompassed by a cached query, this
enables bypassing the traversal of lower levels of the subtree
corresponding to the node as the answers can be obtained
directly from the result set of the cached query. The struc-
ture adapts itself to varying query patterns; new popular
queries replace the old cached ones that are not popular any
more. Queries that are not popular as well as insertions,
deletions and updates are handled in the same manner as in
a general R-tree. Experiments show that the RCached-tree
can outperform R-tree and other such structures by a signif-
icant margin when the proportion of popular queries is 20%
or more by reserving 30-40% of the internal nodes as cache.

Categories and Subject Descriptors

H.2.4 [Systems]: Query Processing; H.2.2 [Physical De-
sign]: Access Methods
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1. INTRODUCTION

The success of R-trees [5] as an index structure in the
realm of database similarity searching has been phenome-
nal. Since it is a height-balanced structure with the objects
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stored only at the leaf levels, when the result sizes are com-
parable, the performance of different such queries tend to
be similar. Each query is agnostic of the general trend of
querying, and is solved afresh irrespective of how “popular”
the query is, without resorting to any memory or “caching”
of previous queries and their results.

In many cases, however, the situation is different. Con-
sider a city with designated public parking spots stored as
objects. In general, queries for parking spots are distributed
along the entire city. However, consider the situation just
before the start of an important sports event or a cultural
event. Most queries on finding suitable parking spots will
be near the venue, i.e., the query points are no more dis-
tributed along the entire city, but are concentrated around
a small area in it.

An R-tree will not treat these queries as any special, and
will process them in exactly the same manner as any other
query. Intuitively, it makes sense to “remember” the location
and answer of previous queries in such situations where sim-
ilar queries re-appear. The above specification immediately
points to a caching solution.

However, it is unlikely that exactly the same query will
be repeated. Either the query location will change, or its
attribute (such as the range or the number of nearest neigh-
bors) will change, or, as is most likely, both the parameters
will slightly differ. Hence, a simple hashing of query pa-
rameters (and results) is unlikely to help much. Thus, there
needs to be a mechanism to identify “similar” queries, and
then process them using an index structure. Moreover, the
performance of non-repeating and non-cached queries should
not suffer too much either.

In this paper, we propose the RCACHED-TREE for this pur-
pose. It is a member of the R-tree family of height-balanced
hierarchical disk-aware structures. It works similar to an
R-tree for “non-popular” queries, i.e., it traverses the rele-
vant paths of the tree and accesses the corresponding nodes
to retrieve the answer. However, when a query is deemed
“popular” in a subtree, its results are stored in the node so
that accessing its children is bypassed, and the answer set
for this subtree is retrieved directly.

For a node, some particular proportion of the storage for
index entries is used as the “cache”. Although this reduces
the amount of indexing that can be achieved as the number
of children nodes are reduced, it provides a short-cut to the
answer for popular queries, thereby essentially bypassing all
disk accesses for levels below the current one.
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Figure 1: Structure of a RCached-tree and its node.

Our main contribution in this paper, therefore, is to in-
troduce the concept of result caching in an R-tree.

Note that we also process the non-popular queries effi-
ciently as in that case, searching through the normal R-tree
structure takes over. This is an important point as most of
the hashing-based solutions will either suffer for such queries
or will need to maintain a separate indexing structure to
which the non-popular queries will be delegated to.

2. RELATED WORK

Traditional methods of utilizing result sets from previous
similar queries are that of hashing. While static hashing
does not scale well, dynamic hashing techniques such as [4,
7] work only for point queries and cannot answer similar-
ity search queries. The disk-based hashing methods do not
explore the spatial locality well, except LSH [6], which, how-
ever, is not efficient for arbitrary range and kNN queries.

For disk-based databases, R-tree [5] remains the quintessen-
tial data structure for spatial indexing. It uses the concept
of minimum bounding rectangles (MBRs) to cluster data
points into hierarchy of regions. R*-tree [2] and X-tree [3]
are some important variants of the R-tree.

Most nodes in disk-aware index structures are rarely full;
while the space utilization in B+-tree is only 67% [8], that
in R-trees is in the range of only 50% to 70% [2].

CSB—+-trees made B+-trees cache aware by creating more
space for index entries in a node after replacing pointers
by a single entry to an array of pointers [9]. Extra memory
buffer was added to each node in [1] to solve queries in a lazy
manner. Lower levels of the tree are not accessed unless the
query buffer is full at a given level. Hence, query processing
occurs in batches thereby saving random disk I/O. In [11],
pointer to frequently accessed leaf nodes are stored in the
unused part of a B+-tree internal node to reduce the overall
node access time.

3. THE RCACHED-TREE

In this section, we describe the RCached-tree in detail.

3.1 Structure of a Node

Each node of the R-tree is divided into two parts: (i) the
index part which contains pointers to children nodes, and
(ii) the cache part which stores (pointers to) results of pop-
ular queries. The index part of the node contains index keys
(MBRs) as in an R-tree [5]. The percentage of space in a
node earmarked for the cache part, denoted by p (at most
50%), is a design parameter which remains fixed for a tree.

Since part of the node is utilized for caching, the number
of keys for indexing decreases which may result in an overall

increase in the height of the tree. Analysis (omitted due
to space restrictions) shows that in most real datasets, the
height differs by at most 1. If the fanout of a normal R-tree
is 8, then that of an RCached-tree is at least §/2.!

Each cache entry in a node consists of the following four
fields: (i) Query point @: The d-dimensional point in the
data space. (ii) Parameter s: Range value for range query
or number of nearest neighbors for KNN query. (iii) Pointer
ptr: Disk pointer where the result set (called “cache file”)
for the query is stored. (iv) Popularity pop: The popularity
measure of the query at this node.

3.2 Structure of RCached-tree

Intuitively, it makes little sense to introduce caching be-
yond a point. The reason is that since the lower level nodes
are quite close to the leaf, accessing the cache via random
disk accesses may not save any more than directly accessing
the leaves. Moreover, the extra overhead of writing cache
files at this level may actually degrade the performance.
Hence, we introduce an engineering optimization and retain
caching only up to some top ¢ levels from the root. The rest
of the levels have fanout equal to that of the corresponding
R-tree. For experiments, we fixed ¢ at 3 since the trees were
of height either 4 or 5.

The RCached-tree, therefore, is a hybrid structure with
the top ¢ levels having a fanout of at most o while the lower
levels can have a fanout up to 8. Figure 1 shows the general
structure of a RCached-tree. We next describe how such a
tree with a non-uniform branching factor is constructed.

3.3 Construction

First, a normal R-tree with a fanout of 3 is built. The
MBRs within the nodes at the ¢'* level of this R-tree then
act as objects for the re-construction of the above part of
the tree with a fanout of a. Essentially, the top ¢ levels of
the R-tree are discarded and are replaced by g + ¢ levels of
RCached-tree nodes. The increase in height of the tree is,
therefore, §, which, as discussed earlier, is at most 1.

3.4 Insertion and Deletion

Insertions and deletions are handled in the same way as in
an R-tree [5]. When the MBR of a node and/or its children
are changed, the result sets of the cached queries become
corrupt. We then simply mark those contents as “dirty” and
do not use them any further. Essentially, they are treated as
purged and, thus, the consistency of the operations as long
as they are sequential, are maintained.

As in most caching solutions, the structure works the
best when there are less updates. A dataset having a large
amount of insertions and deletions after the queries start ar-
riving is unlikely to benefit much from caching. Therefore,
we assume that updates are relatively infrequent.

4. SIMILARITY SEARCH QUERIES

We describe the search for a query @ (which includes the
query location and the associated parameters such as range
or number of nearest neighbors) over a node t. Query pro-
cessing begins at the root.

If the node t is beyond the level where caching is used,
the normal R-tree search is performed. Otherwise, first the

! Assuming a total of 22! entries and 8 = 128, the heights
are respectively 3 and 4. For 2%? entries, they are both 4.



cache entries of t are searched. If there exists a cache entry C
that completely encompasses the bounding box of the query
Q, then the result set is collected as a subset of objects from
the cache file of C' by actually computing the distances of
those objects from the query.

Otherwise, if no such cache entry is present, then all the
subtrees that satisfy the query predicate are examined in a
depth-first-search (DFS) order. A track (and copy) of all
nodes up to the caching level touched by this query are kept
in the memory. This is done so that when the query finishes,
the query can be injected as a cache entry in these nodes.

If the cache slots are full, the new query has to compete
with the existing cache entries for a place using the pop-
ularity measure as described later in Section 4.3. When a
cache slot is free, then of course, the query wins the free slot.
When a query wins a slot, a cache entry is made correspond-
ing to the query, and its results pertaining to the subtree is
written back to disk as the cache file.

4.1 Random Queries

For random queries, the above cache file creation on disk
creates unnecessary random I/O operations as it is unlikely
that the cache file will be ever used again. Thus, to guard
against this problem, when a query arrives for the first time,
even if it wins a cache slot (or if there is a free cache slot),
the corresponding result set is not written as a cache file.
However, when the query arrives the next time (i.e., when
there is a hit for the cached query), the results are written
to the disk as a cache file.

4.2 kNN Queries

For a kNN query, the results are written only for those
nodes at which the search has fetched k new entries within
that sub-tree (effectively computing the kNN radius for the
query within the sub-tree). At each node, a new query
Q' updates its current kNN radius Q".r to min{d(Q, Q") +
Q.r,Q’'.r} for all valid cache entries @ since this ensures that
it will find k new values within that range to compare with.
The query execution for Q within this subtree thus achieves
superior pruning by reducing the radius further.

The root node is treated differently since it is unlikely that
a new query finds a useful cache entry as it always differs
slightly. To solve this, we use Theorem 4 of [10]. When
applied in this context, it implies that the k-NN of a new
query Q' is contained within the m-NN of a cached query Q
if and only if 2d(Q, Q') < d(Q,mNN(Q)) — d(Q, kNN(Q)),
where k < m (the distance function used must be a metric).

Thus, instead of searching for k nearest neighbors, the
RCached-tree searches for m nearest neighbors at the root
where m > k. For a new query Q’, it checks whether the
above inequality holds for a cached query . If yes, the
result set of mNN of @ is directly used to answer the kNN
of Q'. Otherwise, the normal search procedure is continued.

When m is large, the query time increases as more nearest
neighbors are searched. When m is small and close to k, then
the tolerance for the distance of the new query to the cached
query decreases. We choose m = 1.2 X k.

4.3 Cache Popularity Measure

The simple model of assigning the number of times a query
has arrived as its popularity does not work as then it is
harder for a new query that is becoming popular to replace
an old query that had been popular earlier. Thus, the pop-

ularity function should be such that newer queries gain pop-
ularity quickly while old cached queries lose popularity if it
has not been used in a long time.

Without loss of generality, we assume that a query arrives
at every time tick. Thus, only the frequency of queries, and
not the actual wall clock time, is important. To measure the
popularity of a query, we consider a time-interval of M past
queries, i.e., M denotes the time history beyond which the
appearance of a query does not affect its popularity. We use
M = 10000 for our experiments.

Suppose, a query occurs at the current time ¢ and uses
a particular cache slot C. Also suppose, the last time the
same cache slot C' was used was at time t’. We denote the
time difference by At =t —t > 0. We use the concept of
expected cache usage difference, n, that signifies the amount
of time within which a cache slot should be re-used. We
fix n at 0.1M = 1000. The parameter n is the expected
time within which a popular query should re-appear. Lower
values indicate that popular queries are more frequent.

The function W(At¢) = At — n measures the difference
of the usage of this cache slot with the expected value. If
U < 0, the cache slot is used more frequently and should
gain popularity. On the other hand, a positive value of ¥
implies that the cache slot is getting unpopular and, hence,
its popularity should decrease.

If the original popularity value of the cache slot C at time
t' was Pop’, then the new popularity value of C at time ¢t is

Pop(C,t) = p (p~ ' (Pop') + a®(Al)) (1)
The function p(z) measures the popularity value of x:

p(x) = (—z/c)/(L+ |z/c]) (2)

where ¢ is a normalization constant whose value is M/10.
The function p(x) has the range (—1,+1) with p(0) = 0.
It is also invertible. The parameter « controls the rate at
which a query changes its popularity. We fix it to 0.5.

5. EXPERIMENTS
5.1 Experimental Setup

The experiments were performed on a Linux machine run-
ning Ubuntu 11.04 with 2.6.38-16-generic kernel. The sys-
tem has 7.8 GB of main memory and 8 Intel(R) Core(TM)
i7-2600 CPU processors of frequency 3.40 GHz.

We compare the performance of RCached-tree against R-
tree (with quadratic split) and X-tree based on the follow-
ing parameters (the default values are in parentheses): di-
mensionality (3), dataset cardinality (10°), popularity den-
sity (30%), data type (uniform), page size (8 KB), range
value (0.01% of the largest possible distance), number of
nearest neighbors (20), and percentage of node used for
caching purposes (30%). The real data is that of San Fran-
cisco’s road network (1,74,955 nodes), available from http:
//www.cs.fsu.edu/"1lifeifei/SpatialDataset.htm.

For each set of parameters we executed 50,000 queries di-
vided into 5 slots of 10,000 queries each. For each such set,
we perturb both the query centers and the range radii by a
small amount while we keep the k fixed. We considered that
at a given time, there are 10 regions of popularity. Each slot
of 10,000 queries has a different set of 10 popular regions.
Thus, our results indicate the ability of our proposed struc-
ture to adapt to changes in popular regions over time. To
measure the performance variation for each parameter, we
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Figure 2: KNN queries: Cache percentage.

vary only that and keep all the others at their default values
for both range and kNN queries. (Due to lack of space, we
only show representative results.)

5.2 Results

When the cache percentage is low, there is more com-
petition for a cache slot, and hence, the query performance
degrades due to repeated purging of the cache. On the other
hand, when it is too much, the space for indexing goes down,
and consequently, the queries that are not popular suffer as
then more nodes may need to be searched. Figure 2 reveals
that the running time is minimum around 40%.

When popularity density of queries increases, the running
time decreases steadily for both kNN (Figure 3) and range
queries. Even with only 10% popular queries, the perfor-
mance is comparable with that of R-tree and X-tree.

The performance of all the structures improves with in-
creasing dimensionality for low to medium values (this and
all subsequent graphs are omitted). When dimensionality
is low, the branching factor is too high, and the amount of
CPU time spent in searching through the contents of a node
dominates the total running time. At higher values, the
curse of dimensionality eventually kicks in. With increasing
data cardinality, the comparative advantage over R-tree and
X-tree increases, thereby exhibiting the better scalability of
RCached-tree. Due to increase in answer set size, the time
increases with the number of nearest neighbors and range
for kNN and range queries respectively. When page size in-
creases, the CPU time required to process a page as well as
the time for sequential I/Os increase. Consequently, the run-
ning time suffers. A uniform dataset performs worse than a
more concentrated dataset (e.g., Gaussian) due to the high
degree of overlap between the internal nodes. The average
for the real dataset is the best due to its smaller size and is
within 20 ms for the RCached-tree.

5.3 Analysis of the Results

Analyzing the different experimental results, we can draw
the following conclusions: (1) The height of the RCached-
tree is never more than 1 more than the original R-tree.
Thus, even if there are no popular queries, the performance
is comparable to that of an R-tree. (2) The performance of
a RCached-tree steadily improves with increase in number
of popular queries. When the proportion of popular queries
is more than 20%, the RCached-tree clearly outperforms R-
tree and X-tree. (3) The RCached-tree adapts itself nicely
and quickly to the changing query distribution. This is an
important feature in real applications where such shifts in
queries are common. (4) The cache index of a node should
be around 30-40%. Otherwise, there is not enough cache
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space, and repeated purging of popular queries degrades the
performance. (5) The RCached-tree performance is robust
across different values of number of nearest neighbor queries,
the range of the query, the page size and the dimensional-
ity. This makes the structure well applicable to different
situations without the need for extensive parameter tuning.

6. CONCLUSION

In this paper, we have proposed a new disk-based hier-
archical indexing structure, the RCached-tree, which effi-
ciently solves popular similarity search queries by caching
the results of similar queries. For non-popular queries, the
standard R-tree indexing mechanism is used to solve them
efficiently. Experiments demonstrated the scalability and
practicality of our structure. In future, we would like to im-
prove the update handling mechanism. Further, adopting
optimizations from other methods such as index compres-
sion, lazy querying, etc. remain interesting avenues of work.
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