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Abstract—The widespread use of social media and the ac-
tive trend of moving towards more web- and mobile-based
reporting for traditional media outlets have created an avalanche
of information streams. These information streams bring in
first-hand reporting on live events to massive crowds in real time
as they are happening. It is important to study the phenomenon
of burst in this context so that end-users can quickly identify
important events that are emerging and developing in their
early stages. In this paper, we investigate the problem of bursty
event detection where we define burst as the acceleration over
the incoming rate of an event mentioning. Existing works focus
on the detection of current trending events, but it is important
to be able to go back in time and explore bursty events
throughout the history, while without the needs of storing and
traversing the entire information stream from the past. We present
a succinct probabilistic data structure and its associated query
strategy to find bursty events at any time instance for the entire
history. Extensive empirical results on real event streams have
demonstrated the effectiveness of our approach.

Index Terms—data streams, bursty event detection, data
sketch, synopsis, data summaries

I. INTRODUCTION

Social media has changed how we understand the world

today. Every minute more than a billion of micro documents

(text, photos, videos etc.) are generated in a streaming fashion.

These information streams contain events happening around

the world, and have become an important source for us to

know the latest local and global events (big or small). Many

possible ways exist for classifying or associating a social

media record to a particular event [1], [2], [3], [4], [5],

e.g., using its hashtag; and it is possible that the content of

one record is associated with multiple events. We denote the

mentioning of an event e in a social media record as an event
mentioning for e. The total event mentioning of e in a given

time period gives the frequency of e in that period.

Events that are rising sharply in frequency are called bursty
events. There are many different ways of capturing the phe-

nomena of burst. The most intuitive approach is to model

bursts through the acceleration of event frequency over time.

Intuitively, the change in frequency of an event over time forms

a time series, and the acceleration of that time series at time t is

given by the first order derivative of the underlying frequency

curve. For a given event e, its acceleration naturally reflects

how sharp the aggregated amount of event mentionings (its

frequency) has changed for e (in other words, attention to e)

from the underlying information streams.

Note that a bursty event is distinct from a frequent event,
and may not necessarily associate with high frequency. For

example, weather report as an event is clearly a frequent
event since its frequency is high, but it is most likely not a
bursty event since its frequency is relatively stable over time.

In contrast, an earthquake outbreak is clearly not frequent,

but once has happened, it is most likely to be very bursty

(meaning that there will be a significant uprise in a short period

of time in the mentioning of earthquake from the information

streams). That said, to capture only those important bursty

events, one can impose a frequency threshold when detecting

bursty events, i.e., only those bursty events with a reasonable

amount of frequency are worth capturing.

Monitoring and analyzing bursty events in social media is an

important topic in data science, as it enables users to identify,

focus attention and take reactions to important uprising events

in their early stages while they are still developing. To that

end, most existing works focus on detecting current bursty

events in real-time [6], [7], [3], [8], [9].

However, it is also important to be able to travel back

in time and analyze bursty events in the past throughout

the history, in order to support many important and critical

analytical operations. For example, in order to understand

how a city’s emergency network had responded, operated, and

coordinated under an emergency event (e.g., a fire breakout,

a major accident, etc.), we would like to identify such bursty

events in the past and trace how they have developed over time.

Such analysis is essential towards enabling deep analysis of

historical events and improving the effectiveness and efficiency

of future operations and response efforts.

That said, an interesting challenge arises, which is to answer

the following types of questions: What are the bursty events

in the first week of October in 2016? Is “Anthem Protest” a

bursty event in second week of September in 2017? For the

first question, one significant bursty event in the first week

of October in 2016 is obviously the leak of the “Access

Hollywood” tape. For the second question, the answer is

most likely no, since the “Anthem Protest” didn’t become

predominant and gain significant media attention until the

3rd week of September in 2017 as the protests became more

widespread when over 200 players sat or kneeled in response

to Trump’s calling for owners to fire the protesting players on

September 24, 2017.

The historical bursty event detection problem have large

potential in data mining. Recent work [10] has used the idea of

busty event detection in historical data so as to help identifying

key events during US election 2016 and their influence to

the progress and result of the election. Unfortunately, as far
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as we know that no prior work has been done on historical

queries for bursty event detection. Intuitively, a naive approach

in answering these queries is to simply store either the entire
information streams, or just the frequency curves for all events
over the entire history, which is clearly very expensive. This

naive approach is not only expensive in terms of storage, but

also in terms of the query cost: traversing a large amount of

data through histories is simply not going to be efficient.

Our contributions. To facilitate these queries, an efficient way

to detect bursty events within a historical time range is desired.

A key observation is that in many of the aforementioned

analytical scenarios, approximate answers are acceptable, es-

pecially when the approximations are provided with quality

guarantees and users may tune/adjust the tradeoff between

efficiency and approximation quality. This is evident by the

significant amount of studies, and their huge success of

developing various synopses, sketches, and data summaries

for summarizing data streams in the literature [11].

But most of the existing sketching and synopses techniques

developed for data streams are designed to summarize the
entire stream up to now[12], [13], [14]. As a consequence,

they are not able to return the summary for a data stream
with respect to an arbitrary historical query time range.

To the best of our knowledge, no existing techniques support

historical burstiness queries. In light of that, this work aims

to close this gap and our contributions are:

• We present a formal definition of burstiness at any single

time instance and formulate the problem of bursty event

detection in Section II.

• We design a scheme in Section III, which achieves high

space- and query-efficiency, to estimate the burstiness of

an event e for any point in history with high accuracy,

with respect to a single event stream for e.

• We advance the above design in Section IV to a method

that is able to estimate the burstiness of any event e at

any point in history over a stream with mixture of events.

• We extend the investigation to historical bursty time and

event detection queries in Section V.

• We present an extensive empirical investigation in Section

VI using real event streams to demonstrate the effective-

ness of our methods.

Lastly, Section VII presents a review of related work and

the paper is concluded in Section VIII with key remarks and

future work.

II. PRELIMINARIES

A. Problem Formulation

Let M = {(m1, t1), (m2, t2), (m3, t3), . . . , (mN , tN ), · · · }
be an information stream of text elements where each message

mi is associated with a timestamp ti such that ti ≤ tj
iff i < j. Here M can be thought of a stream of tweets,

microblogs or messages, each of which is represented as a

text element/message mi.

Without loss of generality, we assume that each message mi

discusses one particular event from a universal event space Σ

in which each event is uniquely identified by a distinct event

id, and there exists a hash function h that maps a message mi

to an event id in Σ, i.e., h : mi → [1,K] and h : mi ∈ Z

where K = |Σ|.
For example, the following two messages “LBC homeboy

stoked to see Brasil wins Gold !! @neymarjr” and “Featuring
@neymarjr #brasil #gold #Olympics2016” should be mapped to a

single event id. Since, both the messages are related to soccer

final event at Rio Olympic 2016.

Applying h to stream M , we obtain an

event identifier stream (or simply event stream)

S = {(a1, t1), (a2, t2), (a3, t3), . . . , (aN , tN ), · · · } where

ai ∈ [1,K] is an event id. It is possible that ai = aj for

i �= j, and it is also possible that ai = ai+1 and ti = ti+1

which happens when the same event is mentioned by multiple

messages with the same timestamp. In the general case, when

a message mi may discuss multiple events, we assume that h
will map mi to a set of event ids, and add multiple pairs of

(event id, ti), one for each identified event id, to the event

identifier stream S. For example, h can be as simple as using

the hashtag of a message m, or a sophisticated topic modeling

method like LDA [15], [5], [16] that maps messsage m to a

single or multiple topic/s or event/s.

An efficient mapping of messages to event ids is an orthog-

onal problem statement which can be solved separately. As of

now, we consider it as a black box, not to digress from the

objective of this paper.

A temporal substream is defined by elements of a stream

that falls within a temporal range, i.e., S[t1, t2] = {(ai, ti) ∈
S|ti ∈ [t1, t2]}. The frequency of an event e in a given
time range [t1, t2], denoted as fe(S[t1, t2]), is defined as its

number of occurrences in S[t1, t2]. Finally, we define Fe(S, t)
as the cumulative frequency of e in stream S up to time t,
i.e., Fe(S, t) = fe(S[0, t]). When the context is clear, we

simply use Fe(t) to denote Fe(S, t), and fe(t1, t2) to denote

fe(S[t1, t2]). When t is a parameter, Fe(t) defines a function

over the time domain, which we denote as the frequency curve
of e.

We then define the concept of burstiness based on the

incoming rate of an event over a user-defined time span and its

acceleration over two consecutive time spans. We use be(t) to

denote the burstiness of e at time t. Intuitively, if the frequency

curve Fe(t) were a continuous curve with respect to the time

domain, then be(t) is simply the acceleration of its frequency

curve at t, i.e., be(t) =
d(Fe(t))

d(t) . However, even though time is

a continuous domain, in most practical applications, timestamp

values are from a discrete domain. Hence, we cannot take the

first order derivative of Fe(t) to find its acceleration at t.

To address this issue, we introduce a parameter τ called

“the burst span” which captures the time interval length with

respect to which we will calculate the burstiness of an event.

The burst frequency bfe(S, t) (or simply bfe(t) when the

context is clear) of e at time t with respect to stream S
is simply the frequency of e in time range [t − τ, t], i.e.,

bfe(t) = fe(t − τ, t) and it measures the incoming rate of
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Figure 1: An example of burst where τ = 1.

e in a time span [t− τ, t].

Definition 1 (Burstiness): The burstiness be(t) of an event

e at time t is defined by the acceleration of e’s arrival within

two neighboring time spans of length τ each, i.e., be(t) =
bfe(t)− bfe(t− τ).

Figure 1 gives an example of the burstiness. In this sim-

ple example, we set τ = 1. The green dots indicate the

occurrences of an event e. Intuitively, the incoming rate is

stable in time range [0, 1), then grows quickly in the time

range [1, 4). Even though many instances have occurred in the

time range [4, 5), but the increase in incoming rate is actually

slower than that of the previous time span [3, 4]. Hence, the

burstiness value is 0 in [0, 1), then keeps increasing in [1, 4),
and decreases to a smaller value in [4, 5).

It is important to note that burstiness measures the increase
in incoming rate, rather than the incoming rate itself. We are

interested in how significant the change of the mentionings is

for an event, rather than how frequently an event is mentioned.

An event may sustain a high incoming rate in two or more

consecutive time spans, but that does not mean it’s bursty

(if the incoming rates are high but stable). The larger the
burstiness value is, the faster the increase in incoming rate
is for two consecutive time spans. Given a stream S and a

time span parameter τ , we define the following queries:

1) POINT QUERY q(e, t, τ) reports the burstiness of an event

e at time t, i.e., be(t).
2) BURSTY TIME QUERY q(e, θ, τ) returns all timestamps

{t} such that be(t) ≥ θ for a query threshold θ.

3) BURSTY EVENT QUERY q(t, θ, τ) returns all events {e}
such that be(t) ≥ θ for a query threshold θ.

Lastly, a special case is when the even stream contains a
single event, i.e., Se = {(ai, ti)|(ai, ti) ∈ S and ai = e}. In

this case, since all elements contain the same event identifier,

we can simplify its representation as Se = {ti|(ai, ti) ∈
S and ai = e}, i.e., it is an ordered sequence of timestamps.

Se may have duplicated timestamp values when an event is

mentioned by multiple messages with the same timestamp. A

summary of notations is provided in Table I.

B. Baseline Approach

The naive baseline is to store the entire event stream, and

then using a simple variation of binary search we can develop

solutions for all three query types. The space cost of this

approach is O(n) (where n is the size of an event stream), and

the query cost of this approach is O(log n) for a point query,

Table I: Table of Notation

Notation Meaning
e an event or an event id
M = {(m1, t1), (m2, t2), · · · } stream of timestamped

messages
h : mi → [1,K] map a message to an even id
S = {(a1, t1), (a2, t2), · · · } event stream with

(id, timestamp)
Se event stream of e

(timestamp only)
S[t1, t2] substream of S in time range

[t1, t2]
τ burst span
Fe(t) cumulative frequency of e

in S[0, t]
fe(t1, t2) frequency of e in S[t1, t2]
bfe(t) = fe(t− τ, t) burst frequency (incoming

rate) of e at t
be(t) = bfe(t)− bfe(t− τ) burstiness (acceleration)

of e at t

O(n) for a bursty time query if burstiness is not pre-computed

and stored and indexed or O(log n) otherwise, and O(log n)
for a bursty event query. The baseline solution is needed if

exact solutions are required, but in practice, the event stream

is of extremely large size (as time continues to grow) and this

solution becomes expensive. Often time, approximations are

acceptable and this gives us the opportunity to explore the

approximation quality and efficiency tradeoff.

C. Count-Min Sketch

A Count-Min (CM) sketch [12] is a probabilistic data

structure that returns an approximation f̂(x) for the frequency

of x (f(x)) in a multi-set A, using small space. A CM sketch

[12] maintains multiple rows (O(log 1
δ )) of counters. Each row

has O( 1ε ) counters. An incoming element x is hashed to a

counter in each row to increment that counter by 1. To estimate

the frequency of x, CM sketch returns the smallest counter

value among all counters that x is being hashed to from all

rows. This guarantees that Pr(|f̂(x)− f(x)| ≤ εN) ≥ 1− δ,

where N is the size of the multiset A for some 0 < ε, δ < 1.

CM sketch can be easily maintained in a streaming fashion.

III. SINGLE EVENT STREAM

We focus on the POINT QUERY in Sections III and IV, and

extend to other query types in Section V. We start with the

special case where the event stream contains a single event,

i.e., we have Se for some event e. Under this context, we can

drop the suffix e from all notations in the following discussion.

In order to estimate b(t) for any time instance t, one option

is to approximate the burst frequency curve (see Figure 1).

However, that would require the burst span τ to be a fixed

value. We’d like to enable users to query for burstiness while

using both τ and t as a query parameter. Hence, we will instead

approximate the frequency curve F (t) and show how to use

an approximation of the frequency curve to estimate b(t).

1372



1 5 8 10 14
Time: t

0

50

100

150

200

250

300

C
u
m
u
la
ti
v
e
F
re
q
u
e
n
c
y
:
F
(t
)

p0

p1

p2

p3
p4

p5

T=16

p′

p′′

F(t)
̂

F
′

(t)
̂

F
′′

(t)

(a) Frequency curve and approximation.

1 5 8 10 14
Time: t

0

50

100

150

200

250

300

C
u
m
u
la
ti
v
e
F
re
q
u
e
n
c
y
:
F
(t
)

p0

p1

p2
p3

p4

p5

T=16

=Δ ∗ (1,2)

=δ(2,F ∗ (0,2))

=Δ ∗ (0,0)+

F ∗ (0,0)
F ∗ (1,2)

(b) Bounded error.

Figure 2: PBE-1 example: T = 16, N = 260, n = 6, η = 3.

To establish an estimator b̂(t) for b(t), we first make the

following observations. By definition,

b(t) =bf(t)− bf(t− τ)

=f(t− τ, t)− f(t− τ, t− 2τ)

=(F (t)− F (t− τ))− (F (t− τ)− F (t− 2τ))

=F (t)− 2F (t− τ) + F (t− 2τ). (1)

Henceforth, if we have an estimation F̂ (t) for F (t), we obtain

an estimator b̂(t) for b(t):

b̂(t) = F̂ (t)− 2F̂ (t− τ) + F̂ (t− 2τ). (2)

Assume that b̂(t) and F̂ (t) are random variables, then our

estimation error for the burstiness at any time t is also a

random variable, which is |b(t)− b̂(t)|. Since users may pose a

query at any time instance t, assuming that each time instance

is equally likely to be queried, our objective is to minimize

the expectation of the cumulative difference between ground

truth b(t) and estimated b̂(t), which is simply:

minimize

∫ T

0

|b(t)− b̂(t)| dt,

where integration becomes a summation for a discrete time

domain, and T is the latest timestamp in the stream.

To this end, we propose two techniques: one requires buffer-

ing of incoming event stream elements, and the other does

not and is based on an improvement of Persistent Count-Min

sketch (PCM). We dub them PBE-1 and PBE-2 respectively

where PBE stands for persistent burstiness estimation.

A. PBE-1: Approximation with Buffering

Construction. The frequency curve F (t) is a continuous curve

as shown in Figure 1 if the time domain is continuous. In

practice, most event streams consist of discrete timestamps (as

clocks are always discretized to a certain time granularity). In

this case, F (t) becomes a monotonically increasing staircase

curve as shown in Figure 2a.

Consider an approximate frequency curve F̂ (t) that is

always below the staircase curve F (t), i.e., F̂ (t) ≤ F (t) for

all t, and let Δ =
∫ T

0
(F (t)− F̂ (t)) dt. By linearity of random

variables, and equations (1) and (2), we arrive at the following

objective function:

F ∗(t) = argmin
̂F (t) Δ

= argmin
̂F (t)

∫ T

0

(F (t)− F̂ (t)) dt.
(3)

Assume that S has N entries so far up to time T , but

they arrive at n ≤ T ≤ N distinct timestamps, which means

that the size of F (t) (denoted as |F (t)|) is n. We aim to

find an optimal approximation F ∗(t) with fewer entries than

F (t), that can reproduce F (t) with the smallest possible errors
among all approximations F̂ (t) that never exceeds (i.e., never
overestimate) F (t).

Note that we do not have to limit to those approximate

curves that are always under F (t) to get a good approximation

b̂(t), but without such limitation the search space for finding a

good approximation becomes significantly larger and our re-

sults in Section VI demonstrate that the optimal approximation

from F̂ (t)’s with such a limitation is sufficient to return high

quality approximations.
The above approximation error Δ is naturally the difference

of the areas enclosed by the approximate and the original

frequency curves. And we use Δ∗ to represent this error when

F̂ (t) = F ∗(t). It is easy to show the following lemma by (1),

(2), and (3).
Lemma 1: When F̂ (t) = F ∗(t), the expectation of |b(t) −

b̂(t)| is minimized among all approximate curves that do not

overestimate F (t), and it is at most 4Δ∗.
The fact that F (t) is a staircase curve and the constraint

that F̂ (t) ≤ F (t) for any t imply that the optimal approxi-

mate frequency curve F ∗(t) must be also a staircase curve.

Formally,

Lemma 2: Under the constraint that F̂ (t) ≤ F (t) for any t,
F ∗(t) must also be a staircase curve.

Proof. We can use either a piece-wise linear curve or a

staircase curve to approximate F (t), but F̂ (t) that is a piece-

wise linear curve without any x-axis-parallel line segments
must have some time instances where F̂ (t) > F (t) (when

F (t) is still 0). Now, for a piece-wise linear curve F̂ (t) that

is: (1) a mixture of x-axis-parallel segments and angular line

segments; and (2) always below F (t), we can always replace

each angular line segment in F̂ (t) with an x-axis-parallel line

segment with the same extent on x-axis to reduce the area

difference between F (t) and F̂ (t).
For example, consider Figure 2b, {p0, p1, p2, p3, p4, p5} are

left-upper corner points that makes a non-decreasing staircase

curve. Let’s say we have selected two points p0 and p3 and we

have a budget of another one point to introduce to decrease

error within p0 and p3. Right now if we introduce a point

p′ anywhere in range [p0, p3] and use only non-parallel axis

segments, then it will not adhere to constraints F ∗(t) < F (t).
At least one non-parallel axis segments in [(p0, p

′), (p′, p3)]
will cut one of the vertical line segments. But if we only have

axis-parallel segments to choose and select a point anywhere

in range [p0, p3], we will decrease the error without violating

the constraint.
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That said, our problem is reduced to the following: given a

non-decreasing staircase curve F (t) with n points (as shown

in Figure 2a), find an approximate staircase curve with η < n
points while minimizing Δ according to (3), i.e. minimizing

the area difference between F (t) and F̂ (t), such that F̂ (t) ≤
F (t) for any t.

We denote left-upper corner points of any staircase curve

F (t) as PF (t) = {p0, . . . , pn−1}. Firstly, we show that, with

the constraint F̂ (t) ≤ F (t) for any t, the η left-upper corner

points that construct the optimal approximate curve F ∗(t)
must be a subset of PF (t).

Lemma 3: When F̂ (t) ≤ F (t) for any t, PF∗(t) ⊂ PF (t).

Proof. Prove by contradiction. Assume that there F ∗(t) has

a left-upper corner point p′i /∈ PF (t) where the x-coordinate of

p′i is between the x-coordinates of pi and pi+1 ∈ PF (t). Note

that F ∗(t) is always below F (t) for any t. Now if we move p′i
towards the point pi ∈ F (t) that will reduce the area enclosed

by F ∗(t) and F (t). Figure 2a shows an example where we

move p′ to p1 or p′′ to p3 which leads to smaller error. This

contradicts our assumption that F ∗(t) has minimized the error

Δ with p′i /∈ PF (t). Hence p′i must be ∈ PF (t).

Another observation is that the two boundary points in PF (t)

must be included in PF∗(t) in order to minimize the error.

Corollary 1: The boundary points of PF (t), i.e., p0 and

pn−1, must be selected by PF∗(t) in order to minimize Δ.

Corollary 1 and Lemma 3 enable us to obtain the opti-

mal approximation F ∗(t) with a budget of η points. After

including the two boundary points we are left with (η − 2)
budget and (n − 2) ∈ PF (t) points to choose from. Let

P = {p1, · · · , pn−2} be the rest of points from PF (t), and

F ∗(i, j) be the optimal curve with the smallest approximation

error for F (t), among all approximations F̂ (i, j)’s formed by

using i points chosen from the first j points in P , where

0 ≤ i ≤ j ≤ n − 2, and the two boundary points (p0 and

pn−1) that were included for any approximation. Let Δ∗(i, j)
be the approximation error of F ∗(i, j).

Let say, we have an approximation F ∗(i−1, x) for some x
in range [i− 1, j − 1]. Consider a new approximation F (i, j)
that is formed by PF∗(i−1,x)

⋃{pj+1 ∈ P}, i.e., adding the jth

point from P to update the approximate curve F ∗(i−1, x) so

that it now has i points from the first j points in P (instead of

having i− 1 points from the first x points in P ). Let F (i, j)’s
approximation error be Δ(i, j).

The reduction in approximation error is exactly the area

difference (between an approximate curve and F (t)) reduced

by F (i, j) compared to that of F ∗(i−1, x), and we denote this

error reduction as δ(j, F ∗(i−1, x)) = Δ∗(i, j)−Δ∗(i−1, x);
see Figure 2b. Now we can formulate a recurrence relation as:

Δ∗(i, j) = min

{
minx∈[i−1,j−1] Δ

∗(i− 1, x)− δ(j, F ∗(i− 1, x));

minx∈[i,j−1] Δ
∗(i, x).

The above recurrence relation can be solved efficiently with

a dynamic programming formulation. Our goal is to find

Δ∗(η−2, n−2) and the curve F ∗(η−2, n−2) that corresponds

to it.

Algorithm 1: PBE-1 Algorithm (Dynamic Programming)

Input: P = {p0, ..., pn−1} and η
where pi = (x, y) coordinates ;
Output: PF∗ points and min cost;
// Calculate Δ∗(0, 0);
for i := 0 to n− 1 do

Δ∗(0, 0) = Δ∗(0, 0) + (pi+1.x− pi.x)× (pi.y − p0.y);
end
min cost = ∞ ;
imin = 0 ;
for i := 1 to n− 2 do

Δ∗(i, 0) =∞;
for j := 1 to min(i, η) do

Δ∗(i, j) =∞;
for k = j − 1 to i do

δ = (pn−1.x− pi.x)× (pi.y − pk.y);
temp = Δ∗(k, j − 1)− δ ;
if temp < Δ∗(i, j) then

Δ∗(i, j) = temp ;
bt[i][j] = k;

end
end

end
if i ≥ η and Δ∗(i, η) ≤ min cost then

min cost = Δ∗(i, η);
imin = i;

end
end
Add pn−1 to PF∗ ;
i = imin; j = η;
while i > 0 do

Add pi to PF∗ ; i = bt[i][j]; j = j − 1 ;
end
Add p0 to PF∗ ;
return PF∗ ,min cost;

The above discussion leads to an optimal solution to repre-

sent an incoming event stream and approximate its frequency

curve F (t) with the smallest possible error using a space

budget of η points. This also leads to the smallest possible

error for estimating the burstiness for any time instance. The

parameter η is a parameter used to trade-off between space and

error. An end-user may also impose a hard cap on the error

Δ∗ instead of imposing a space constraint η. The algorithm

above can be easily modified such that it finds the smallest

space usage to ensure that a specified error threshold is never

crossed.

However, a limitation of this method is that it requires

buffering up to n points in F (t) so that it can run a dynamic

programming formulation to approximate F (t). Note that in

practice, the number of points (n) to represent F (t) could

be much less than the actual number of elements N in an

event stream S, due to the fact that there could be multiple

occurrences of the same event at a given timestamp. That

said, PBE-1 maintains F (t) using incoming elements in a

streaming fashion, and when F (t) has reached n points for

some user-defined parameter n, it runs the above algorithm to

approximate F (t) with F ∗(t) using η points. It then repeats

this process for the next n points in F (t). Parallel processing

on mutually exclusive time ranges can be also leveraged to

improve system throughput.
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(a) Timestamped frequency ranges A. (b) A PLA L for A.

Figure 3: An example of PBE-2.

Lastly, PBE-1 can also be used as an offline algorithm to

find the optimal approximation for a massive archived dataset.

Query Execution. Once PBE-1 is constructed, one can easily

use it to find the b̂(t) score according to Equation 2. In this

equation, F (x) is equal to the y-coordinate of the first point

in PF∗ before timestamp t. This point can be found quickly

via a binary search.

B. PBE-2: Approximation Without Buffering

PBE-1 finds a nearly optimal approximation of b(t), but it

requires buffering. To remove the buffering requirement, we

have to settle for a more coarse approximation. To that end,

we develop an online piecewise linear approximation (PLA)

technique for approximating F (t) that requires no buffering.

Construction. Unlike the PBE-1 approach where approxima-

tion is a subset of points from F (t), a PLA can deviate from

points that define the staircase curve of F (t) by a distance (i.e.,

its approximation error) γ at any time t, where γ is a user-

defined error parameter. A too restrictive γ value may result

in a lot of line segments in the approximation while allowing

more freedom might not be able to capture F (t) accurately.

Recall that the left-upper corner points of F (t) are repre-

sented by PF (t) = {p0, p1, . . . , pn−1}. Each point represents a

timestamp and the cumulative frequency at that time instance,

i.e., pi = (ti, F (ti)); collectively, they define a staircase curve

F (t) in the time range [0, T ] as shown in Figure 3a.

The basic idea of PBE-2 is to allow each point on F (t)
to deviate from F (t) by no more than γ distance for any t ∈
[0, T ], i.e, we want to find an approximation F̂ (t) such that

F̂ (t) ∈ [F (t)−γ, F (t)] for any t ∈ [0, T ]. Note that similar to

PBE-1, we also limit our search space to those approximations

that do not overestimate F (t).
Now, our problem is reduced to the following

problem. Given a sequence of timestamped
frequency ranges A = {(t0, [F (t0) − γ, F (t0)]),
(t1, [F (t1) − γ, F (t1)]), . . . , (tn, [F (tn) − γ, F (tn)])},
we want to find a set L = {�1, . . . , �η} of piece-wise linear

line segments, so that collectively they “cut through” every

frequency range in A. Each element �i in L is a line segment

defined by a line (ait + bi) and a time range (t′i−1, t
′
i) in

which �i is in effect.

However as shown in Figure 3a, when two neighboring

left-upper corner points from PF (t) has a huge gap in their

frequency values, say p0 and p1, a line segment that cuts

through (t0, [F (t0) − γ, F (t0)]) and (t1, [F (t1) − γ, F (t1)])

(a) Polygons Gk−1 and Gk. (b) Infeasible new constraints.

Figure 4: Online approximation of F (t) without buffering.

may introduce significant errors (anywhere between 0 and

(F (t1) − F (t0)) when it is used to estimate any frequency

value F (t) for some t ∈ (t0, t1).
To address this issue, we introduce additional points to be

added to PF (t) to bound such errors. In particular, we require

the following points to be added: for every pi ∈ PF (t), add p =
(ti−1, F (ti−1)) to PF (t). Note that in our definition, one unit
time is least interval between successive points. In other word,

we add the point on the leveling part of the staircase curve right

before the staircase curve rises to pi with a frequency value

F (ti). By the property of a staircase curve and the construction

of PF (t), for any pi−1, pi ∈ PF (t), F (ti−1) = F (ti − 1) <
F (ti), and the new PF (t)’s size is 2n. An example is shown

in Figure 3a.

Now we derive the set of timestamped frequency ranges A
using the newly defined point set PF (t), and search for a piece-

wise linear line segments set L that cuts through A. Figure 3b

illustrates this process.

A straight line (at + b) that cuts through k consecutive
timestamped frequency ranges (tk, [F (tk) − γ, F (tk)]) from

A, for some k = [0, . . . , 2n − 1] is from the set of all (a, b)
value pairs that satisfy the following k equations:

F (tj)−γ ≤ atj+b ≤ F (tj), for some x ∈ [0, 2n−1], j ∈ [x, x+k].

(4)

We use linear programming to solve the above set of linear

equations to solve for valid (a, b) values. Each equation in (4)

represents two half-planes as below with parallel edges in the

(a, b) space:

b ≥ (−tj)a+ F (tj)− γ, b ≤ (−tj)a+ F (tj). (5)

The feasible solutions of (a, b) lie in the region bounded by

a polygon Gk created by (5) for k consecutive timestamped

frequency ranges from A as shown in Figure 4a.

Note that PF (t) and then its timestamped frequency ranges

A can be constructed online in a streaming fashion from S.

The following algorithm PBE-2 will find the set of piece-wise

linear line segments L as an approximate F̂ (t) to approximate

F (t), such that F̂ (t) ∈ [F (t)− γ, F (t)] for any t ∈ [0, T ].
Let Gk−1 be the polygon created up to now with 2(k − 1)

constraints as in (5) from the first (k − 1) consecutive

timestamped frequency ranges in A. Now, when the next

timestamped frequency range (say with a timestamp tk) from

A has arrived, it defines two more constrains as defined by

(5). If including these two constraints with the first 2(k − 1)
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Algorithm 2: PBE-2 Algorithm

Input: (ti, [F (ti)− γ, F (ti)]), i = 1, 2, . . . , n;
Output: L set of lines {l1, l2 . . .} ;
Compute G2 with
b ≥ (−tj)a+ F (tj)− γ); b ≤ (−tj) + F (tj)) for j ∈ [1, 2] ;
i = 1; k = 3;
start = t1;
while k ≤ n do

if Gk−1 has non-null intersection with
b ≥ (−tk)a+ F (tk)− γ; and b ≤ (−tk) + F (tk)) then

Compute Gk by adding constraints of equations;
k = k + 1;

end
else

Choose (a, b) from Gk−1 for line li : (at+ b) for
t ∈ [start, tk−1] ;
Add li to L;
start = tk; i = i+ 1;
Compute Gk+1 with b ≥ (−tj)a+ F (tj)− γ); and
b ≤ (−tj) + F (tj)) for j ∈ [k, k + 1] ;
k = k + 2;

end
end
return L;

constraints can still lead to a bounded polygon Gk, we replace

Gk−1 with Gk and continue (see Figure 4a. Otherwise, we

randomly choose a point (a, b) from the area defined by Gk−1

and add � = (at+b, [0, tk−1]) to L; and we throw away Gk−1

and start constructing a new polygon from scratch. Figure 4b

demonstrates an example geometrically.

PBE-2 is able to update its current polygon in O(1) time for

each new incoming element (solving two linear equations). To

meet a specific space constraint η for maintaining a polygon,

we can ask PBE-2 to throw away the current polygon and

start constructing a new one whenever there are η vertices

to describe the current polygon. Lastly, the following lemma

is trivially derived by (1), (2), and the property of F̂ (t)
constructed by PBE-2.

Lemma 4: PBE-2 returns an approximation b̂(t) for b(t) at

any time instance that satisfies |̂b(t)− b(t)| ≤ 4γ.

Query Execution. The query execution of PBE-2 is very

similar to the one in PBE-1. We can still use a binary search

to find the corresponding segment for any timestamp, and use

it to calculate the corresponding F (t) score.

C. Cost Analysis of PBE-1 and PBE-2

For every batch of an event stream with N ′ elements (that

leads to n′ points in their frequency curve F (t)), PBE-1’s

space cost is O(η). Then κ = η/n′ ∈ (0, 1) is the constant

factor by which the space cost is reduced, compared to the

naive exact solution. The space complexity of PBE-1 is

O(κ · n) where n is the total size of the frequency curve

for the entire event stream. PBE-2’s space cost varies on the

data distribution, as it depends on the size of L at the end

of the day when the entire event stream is processed. In both

cases of real data sets, the space requirement is much less than

that as confirmed by our empirical results in Section VI. The

query complexity for both PBE-1 and PBE-2 is the cost of

a binary search over the timestamp values, which leads to a

time complexity of O(log n) in the worst case.

IV. MULTIPLE/MIXED EVENTS STREAM

In the general case, an event stream S may have multiple

event ids. A naive solution is to apply PBE-1 or PBE-2 for

each of the single even streams from S. But this means that

we would have to maintain up to K = |Σ| PBE-1 or PBE-2
structures in the worst case, one for each single event stream

Se for any e appeared in S and in the worst case all events

from Σ had appeared in S.

To address this issue, we combine a Count-Min (CM) sketch

structure [12] with a PBE construction of same type (PBE-1
or PBE-2).

Construction. We maintain d = O(log 1
δ ) rows of cells and

each row has w = O( 1ε ) cells, where 0 < ε, δ < 1. But

instead of using a simple counter as what CM sketch does,

we use a PBE at each cell. We also use hd independent hash

functions such that hi : e → [w] uniformly for i ∈ [1, d].
Let PBEi,j represent the PBE at cell (i, j) (jth column at ith
row). An incoming element (e, t) is hashed to a cell in each

row independently. Once there, we ignore the event id, and

treat all elements that were mapped to this cell as if they were
a single event stream by ignoring the potential collisions of
different even ids. We use this single event stream to update

the PBE at that cell; see Figure 5 for an illustration. We dub

this method CM-PBE (with two variations: CM-PBE-1 and

CM-PBE-2).

The query algorithm and the error analysis of the two vari-

ants are identical; they only differ in the final error bounds due

to the difference in error bounds inherited from PBE-1 and

PBE-2. Hence, we simply denote our structure as CM-PBE.

Similarly as that in Section III, we first show how to return

an approximation F̂e(t) for Fe(t) for an event id e and a time

instance t using a CM-PBE.

Query algorithm and error analysis. Given a query q(e, t)
that asks for Fe(t), we probe each row in CM-PBE us-

ing hd(e)’s, and return the estimation F̂i,hi(e)(t) using the

PBEi,hi(e) at cell (i, hi(e)) for i ∈ [1, d]. Note that F̂i,hi(e)(t)
is an approximation of Fx(t) over a single event stream

Sx = {(a, t) ∈ S|hi(a) = hi(e)}. A key observation is that

Fx(t) =
∑

a Fa(t) for all such a’s where hi(a) = hi(e),

which means that Fx(t) ≥ Fe(t). So F̂i,hi(e)(t) returned

by PBEi,hi(e), which approximates Fx(t), may overestimate

Fe(t). But since each PBE by our construction always return

an estimation that is no larger than Fx(t), this will compensate

the overestimation on Fe(t).
Lastly, we return the median from the d estimations from the

d rows as the final estimation F̂e(t) for Fe(t). Now, viewing

each PBE at any cell as a black-box counter for approximating

the cumulative frequency Fe(t) for any item e hashed into

that cell, the above process becomes similar to that of a

CM-sketch where each cell maintains a standard counter to

approximate the frequency of any item that is hashed into that

cell. That said, using the standard median-average analysis,
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Figure 5: CM-PBE.

the Chebyshev inequality as well as the Chernoff inequality,

we can easily show the following results:

Theorem 1: CM-PBE-1 returns an estimation F̂e(t) for

Fe(t) for any e ∈ Σ and t ∈ [0, T ] such that Pr[|F̂e(t) −
Fe(t)| ≤ εn + Δ∗] ≥ 1 − δ. where 0 < ε, δ < 1, Σ is event

set, n is the size of Fx(t) for any cell. The same result hold

for CM-PBE-2 by replacing Δ∗ with γ, where Δ∗ and γ are

defined in Sections III-A and III-B respectively,

Theorem 1 follows from the linearity of the Count-Min

Sketch[12], its own ε-guarantee as we have mentioned it in

Section II-C.

A similar analysis as that in Section III will lead to:

Lemma 5: CM-PBE-1 returns an estimation b̂e(t) for be(t)
for any e ∈ Σ and t ∈ [0, T ] such that Pr[|̂be(t) − be(t)| ≤
εn+ 4Δ∗] ≥ 1− δ. The same result hold for CM-PBE-2 by

replacing Δ∗ with γ.

Space cost. In worst case, for every Δ∗ points, PBE-1 gener-

ates a segment, resulting in a total space of O(( N
Δ∗ +

1
ε ) log

1
δ )

for CM-PBE-1. However, theoretical justification from ran-

dom stream model in adversarial condition suggests total space

cost is O(( N
Δ∗2 + 1

ε ) log
1
δ ), which is also validated with our

exhaustive empirical experiments [17]. The Δ-factor improve-

ment on the space is significant as Δ∗ is an additive error

controlled by user. The same result applies for CM-PBE-2 by

replacing Δ∗ with γ .

V. EXTENSION

Bursty time query. A bursty time query q(e, θ, τ) finds all

time instances t’s such that be(t) ≥ θ. Now, consider the single

event stream case, a key observation is the incoming rate of

e within a linear line segment on its frequency curve F (t) is

a constant! Hence, its acceleration (i.e., burstiness) is 0 for

that linear line segment. And this is still true for a linear line

segment on an approximate frequency curve F̂ (t), regardless

whether it is a staircase curve in PBE-1 or a PLA curve in

PBE-2. This implies that we only need to ask a POINT QUERY

q(e, t, τ) to PBE-1 or PBE-2 at each time instance when a

new line segment starts. In other word, the query cost is linear

to the size of PBE-1 or PBE-2 to answer q(e, θ, τ).
To answer q(e, θ, τ) for a multiple events stream using

CM-PBE, we simply carry about the above process for each

cell at every row that e is mapped to. We omit the details in

the interest of space.

Bursty event query. A bursty event query q(t, θ, τ) finds

Figure 6: Binary decomposition of the event id space.

events e’s such that be(t) ≥ θ. A baseline approach is query

each event id e ∈ Σ using a POINT QUERY q(e, t, τ). However,

this clearly becomes expensive if K = |Σ| is large. A minor

optimization is to keep the set of event ids that appeared in

S and only query those, but still this can be expensive if S
contains many distinct event ids.

To find a more efficient and scalable solution is not trivial

in this case. Our idea is to build a dyadic decomposition over
the event id space. We then use a binary tree over these dyadic

ranges and a CM-PBE for each level of the tree.

More specifically, consider the example in Figure 6 with

only 4 event ids. In the leaf level, we have an event stream

S contains mentionings of 4 events {e1, e2, e3, e4} over time,

and a CM-PBE0 over is maintained over S using the event

id space {1, 2, 3, 4}. In the second level, we have an event

stream S′ with 2 events {e1,2, e3,4} where any (e1, t) ∈ S or

(e2, t) ∈ S adds an element (e1,2, t) ∈ S′, and any (e3, t) ∈ S
or (e4, t) ∈ S adds an element (e3,4, t) ∈ S′. We then maintain

a CM-PBE1 over S′ using the event id space {(1, 2), (3, 4)}.
Lastly, in the root level, we have an event stream S′′ with

only 1 event {e1,2,3,4} where any (e1,2, t) ∈ S′ or (e3,4, t) ∈
S′ adds an element (e1,2,3,4, t) ∈ S′′. We then maintain a

CM-PBE2 over S′′ the event id space {(1, 2, 3, 4)}.
To derive a pruning condition while searching for bursty

events using this structure. Consider the subtree that contains

e1,2 as the parent node and e1 and e2 as two children nodes.

We have:

b21(t) =(F1(t)− 2F1(t− τ) + F1(t− 2τ))2,

b22(t) =(F2(t)− 2F2(t− τ) + F2(t− 2τ))2,

b21,2(t) =(F1,2(t)− 2F1,2(t− τ) + F1,2(t− 2τ))2.

A key fact is that F1,2(t) = F1(t) + F2(t) for any t by our

construction. Hence, we have:

b21,2(t) = (b1(t) + b2(t))
2 = b21(t) + b22(t) + 2b1(t)b2(t),

which implies that: b21,2(t) − 2b1(t)b2(t) = b21(t) + b22(t).
Hence:

if b21,2(t)− 2b1(t)b2(t) < θ2, (6)

then it must be b21(t) < θ2 and b22(t) < θ2.

Note that at the level with stream S′ we can use CM-PBE1

over {(1, 2), (3, 4)} to estimate b̂1,2(t), and CM-PBE0 over

{1, 2, 3, 4} from the level below for stream S to estimate b̂1(t)
and b̂2(t). Hence, we can easily check (6) to see if we need to

go down to the next level of this subtree or not. It is easy to

generalize this filtering condition to every node of the binary

tree at every level over these dyadic ranges to prune the search
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Algorithm 3: Bursty event query

Input: K, t, θ, τ ;
Output: E set of events {ei ∈ K : bE(t) ≥ θ} ;
Construct CM-PBE’s as described in Section V;
return recursion(log |K|, 1, |K|, t, θ, τ );
Function recursion(lv, l, r, t, θ, τ ):

if lv = 0 then
if CM-PBE0.PointQuery(x, t, τ) ≥ θ then

return {x};
end

end
else

m = �(l + r)/2�;
bp =CM-PBElv .PointQuery(el,...,r, t, τ);
bl =CM-PBElv−1.PointQuery(el,...,m, t, τ);
br =CM-PBElv−1.PointQuery(em+1,...,r, t, τ);
if b2p − 2bl,...,mbm+1,...,r ≥ θ2 then

Result-L = recursion(lv − 1, l,m, t, θ, τ );
Result-R = recursion(lv − 1,m+ 1, r, t, θ, τ );
return Result-L ∪ Result-R;

end
end
return ∅;

end

space quickly while searching for bursty events, given a bursty

event query q(t, θ, τ). As a last step, we remove those from

the returned candidates with be(t) < −θ. The space cost of

this approach is O(logK|PBE|), as we have at most logK
levels and each level uses just one PBE. The query cost can be

as efficient as just O(logK) POINT QUERIES (the worst case

query cost is still O(K) POINT QUERIES when all events are

bursty at t, which rarely happens. In that case, any algorithm

has to pay at least O(K) POINT QUERIES costs anyway).

VI. EXPERIMENTS

In this section, we conduct an experimental study on real-

world data sets to evaluate the proposed methods. They are

evaluated primarily on three measures: the storage space, the

execution (construction and query) time, and the accuracy of

the query results.

Data sets. We construct the first data set (olympicrio) by

sampling from Twitter data in August 2016 about Olympic

Games Rio. We sampled N = 50, 302, 975 tweets in total. All

tweets in this data set was given an event identifier based on

the type of tweet. We classify the event id of tweets based on

hashtags and keywords. We have found K = 864 identifiers.

We extract the (timestamp, identifier) pair from the data

set. The timestamps have a granularity of 1 second, and thus

its upper bound is T = 2, 678, 400.

We extract two sub-datasets from olympicrio: soccer and

swimming. Figure 7 demonstrates the characteristics of them.

Since swimming matches were concentrated in a few days in

the first half of the game, we can see a time range of large

burstiness over there; after which, both its incoming rate and

burstiness decrease to almost zero. On the other hand, soccer

matches were held throughout the game, so there are several

bursts. The largest burst happens right before the final. To
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Figure 7: Two events in olympicrio. τ = 86, 400 seconds (1 day).

make fair comparison, we then normalize the volume of both

datasets to 1 million tweets.

Our second data set uspolitics is also from a sample of

Twitter data and we used tweets from June 2016 to November

2016 and focused on events related to US politics. The original

data set has 286 million tweets on US politics (e.g. including

various events from Election 2016). We found K = 1, 689
identifiers of events from this data set, which is almost twice

than olympicrio. We uniformly sampled 50 million tweets

from the original data set to perform a comparative study with

olympicrio in section VI-C. Later, we present the trend of

uspolitics with full data set. This data set has many events

with short period of bursts that can be observed in Figure 13

with intermittent spikes.

Setup. We conducted all experiments on a machine with Intel

i7 6th Generation Processor powered with Ubuntu 14.04 LTS.

Since a bursty time query is simply a linear (linear to the

number of line segments in a PBE) number of point queries,

we focus on the investigation of point and bursty event
queries.

For a point query, the approximation errors of our meth-

ods (for both PBE-1 and PBE-2) are additive, which is

|̂be(t) − be(t)|. For a bursty event query, we measure the

approximation quality using the standard metrics of precision

and recall. For all approximation error and query time results,
we report the average over 100 random queries.

Let n′ be the buffer size for PBE-1 where n′ is the

number of points in the exact staircase curve F (t) of current

buffer, i.e., we maintain F (t) for incoming elements and

whenever F (t) has reached n′ points, we declare the end of

the current buffer. Unless otherwise specified, n′ = 1, 500 for

all experiments involving PBE-1.

The baseline method that stores F (t) exactly for the entire

olympicrio or uspolitics requires approximately 10GB.

A. Parameter Study

PBE-1 requires a parameter η which controls its space

budget for each buffering period; whereas PBE-2 requires a

parameter γ which controls the approximation error. We first

investigate the impacts of these parameters for PBE-1 and

PBE-2 respectively, using point query over a single event
stream. The event streams tested in this experiment are the

soccer and swimming events that illustrated in Figure 7.

Figure 8a shows that as we increase η, which is the size

of the approximate staircase curve F ∗(t) in each buffer, the
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Figure 8: PBE-1 parameter study.
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Figure 9: PBE-2 parameter study.

over size of PBE-1 increases linearly as expected. But its

overall size is still less than 35KB for the entire stream when

η increases to 70. The same figure shows that its construc-

tion time also increases with η, as the cost of the dynamic

programming formulation for each buffer depends on η. But

even in the worst case with η = 70, its total construction
time from all buffers for a one-month stream is only about 34

seconds. We see similar trend in both soccer and swimming
data set, inspite of having different trend in burstiness score (as

shown in Figure 7b). In terms of approximation error, PBE-1’s

approximation quality very quickly with a small increase of η
as shown in Figure 8b: when η > 12, its approximation error

is less than 10 for burstiness values that can be as high as

more than 25, 000 (see Figure 7b).

Figure 9 reports the impact of the parameter γ to PBE-2
using the same data set and set of queries. When γ is small,

such as γ = 2, PBE-2 takes around 100KB for soccer and

swimming data set. As we increase the value of γ, we are

tolerating more approximation error at each point. Therefore,

the space cost goes down very quickly when γ starts to

increase as seen in Figure 9a: the soccer data set uses less than

18KB for the entire stream when γ > 50. Similarly swimming
data set uses around 12KB space when γ > 50. When

γ is large enough, PBE-2 stores only enough information

to approximate large bursts and ignore all small fluctuates,

and increasing γ won’t reduce the space cost significantly

anymore. Its construction time reduces somewhat for larger

γ values, but is mostly flat and very efficient (solving a

few linear constraints and checking half-plane and polygon

intersections). Its total construction cost for the entire stream

only accumulates to less than 0.016 second as shown in Figure

9a. Figure 9b shows that its approximation error is linear to

and bounded by γ (and in practice it is much less than the

theoretical bound 4γ), which is as expected.
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Figure 10: PBE: single event stream.
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Figure 11: CM-PBE: Space vs accuracy.

The above results demonstrate that both PBE-1 and PBE-2
achieve excellent approximation quality (errors in the range

of 10s for burstiness values as large as more than 25, 000)

using very small space (a few KB), and both of them can be

constructed very efficiently.

B. Single Event Stream

In this set of experiments we compare the performance

of PBE-1 and PBE-2 under the single event stream setting.

To make a fair comparison, we adjust and vary their η and

γ parameters respectively so that the resulting PBE-1 and

PBE-2 use roughly the same amount of space in byte. Figure

10a shows that they yield good approximation errors when

given the same amount of the space, while PBE-1 always

enjoys a better approximation quality. Next, by fixing the

space usage to 10KB for both PBE’s, we study the impact

of n = |F (t)|: number of points to represent the exact curve

F (t) for the entire stream. We produce streams of varying

length using soccer and swimming so that their n values

varies from 100, 000 to 900, 000. Figure 10b shows that both

PBE’s produce larger errors while n increases, as there are

more information in the curve F (t) to summarize while using

the same space. Interestingly, the error increases when the

incoming rate shown in Figure 7a has a significant change.

The reason is that within the range when the incoming rate is

stable, increasing n will include the events with a close value

of incoming rate than the current last recorded incoming rate.

Therefore, it’s likely that the new points can be represented by

the last staircase or PLA. As a result, the error won’t change

a lot with the same size. On the other hand, within the range

that incoming rate varies, extra staircases or PLAs have to be

included in the PBE’s to represent the new values. With a

fixed size, the error has to increase. This explains the trend

observed in Figure 10b.
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Figure 12: Bursty Event Detection: Space vs precision/recall

Figure 13: Bursty events from uspolitics and their burstiness values.

C. Multiple Events Stream
For a stream with multiple events, we will use a CM-PBE

and we set ε = 0.005 and δ = 0.02, i.e., it introduces an

(additional) additive error εn and a failure probability of 2%
in the worst case to the error introduced by the corresponding

PBE’s. We first used the entire olympicrio in this set of

experiments and studied the performance of CM-PBE-1 and

CM-PBE-2. We use a similar set up as that in the single event

experiments, where we first allocate the same amount of space

(in bytes) to both PBE’s (we adjusted their parameters η and

γ accordingly to achieve this), and study their approximation

quality in Figure 11a. The results show that they still enjoy a

high quality approximation error (less than 90 for a burstiness

value range that can be as high as more than 25,000), and

with a space usage of about 70-100 MB. Note that this is still

much better than storing the entire stream. We then run the

same experiment on the uspolitics dataset, and the results are

shown in Figure 11b. Surprisingly, although these two datasets

have the same total volume, the performance on uspolitics
suffers more with small spaces. The reason is that events in

uspolitics have very different population. Some events attract

a lot of attention, while others have only a few discussion.

With a small space, the fluctuation of incoming rates of

unpopular events are likely to be ignored, and the error can be

large. When we increase the space budget, CM-PBE will be

affordable to store the trends with finer granularity, and finally

lead to good results for both major and minor events.

D. Bursty Event Detection
Finally, we investigate the performance of our method, as

described in Section V, for bursty event detection. Our method

uses a binary decomposition over the event id space and

builds a CM-PBE for each level where the number of events

reduces by half as one goes one level above in the tree. This

method allows effective pruning (of subtrees) while searching

for bursty events with a top-down strategy from the root. In

practice, in most cases we only need to issue O(logK) point

queries, roughly O(1) per level, to find bursty events rather

than issue O(K) point queries using a naive approach (one

per event). This is because in practice, only a small fraction

of events are bursty at any given time, so most subtrees will

be pruned away using our search strategy and pruning bound.
Our search strategy and pruning bound itself does not intro-

duce any additional errors, but a point query from a CM-PBE
at each level may return a two-sided error while approximating

b2e(t). Hence, Figure 12 investigates the precision and recall

of this method ( CM-PBE-1 and CM-PBE-2 give similar

performance with CM-PBE-1 returning better results) and

how they change when we vary the total space usage. For each

query, we generated a set of burstiness threshold θ from the

range of possible burstiness values of the underlying stream.

The results demonstrate that our method is able to achieve high

precision and recall using small space. Note that generally the

recalls are better than the precisions. This is because when

an event is bursting, the incoming rate will have significant

change and is likely to be captured by CM-PBE and detected

as a bursty event. On the other hand, a bursty event reported

can actually be the result of conflicting non-bursty events, so

there will be a few false positives in this case. Besides, the

results of olympicrio are better than the results of uspolitics,

which aligns with the discussion in previous experiments.
Lastly, we present the bursty event trend of uspolitics

election 2016 data set. We categorized our events into two

category: Democrats and Republican based on its affiliation

towards one party. The result of our method shows Democrats
and Republican events in timeline along with their magnitude

of burstiness in Figure 13. A web page version of this result

can be found at estorm.org, where we have marked major event

happenings with circle on top of its bursts. As an example,

our method successfully detected the burst right around the

start of the republican party national convention on July 18.

VII. RELATED WORKS

Burst Detection. Kleinberg [18] defined the term bursty for

events, where it is assumed that inter-event gaps x of event

follow a density distribution , and a finite state automaton is

proposed to model “burstiness”. We model “burstiness” as the

acceleration of incoming rates over time rather than assuming

a distribution function and a fixed set of states over time.
Zhu et al. [19] applied Haar wavelet decomposition as

their basis to detect “bursts”. Fung et al. [20] modeled bursty

appearance of texts as binomial distribution. He et al. [21] ap-

plied discrete Fourier transformation (DFT) to identify bursts.

Similar to these works, we also have a windowing parameter,

τ i.e. to define a burst span for burstiness calculation.
There are also studies on topic discovery in microblogs,

where authors used emerging/peaky/trendy as synonyms [22].

Shamma et al. [7] modeled peaky topics by normalized term

frequency score. Lu et al. [23] and Schubert et al. [24] defined

trendy topic with a variant of Moving Average Convergence

Divergence prediction method to find trending score. AlSumait

et al. [15] and Cataldi et al. [25] used window based approach

with online LDA and aging theory over frequency.
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Some of the previous studies focus on real-time detecting

bursty events in social media. Cameron et al. [26] first

introduced a bursty event detection system and showed how

it plays an important role in crisis management. Xie et al. [6]

proposed TopicSketch to detect events from Twitter data with

short response time. Zhang et al. [9] proposed Geoburst to

discover local (define geographically) bursty events. However,

none of these works focus on summarizing the burstiness

information into a compact sketch. In the case that the user

is going to repeatedly issue historical queries with different

parameters, the existing techniques can’t be directly applied.

Data sketching. Our study is also related to the topic of

sketching, building synopses and other data summaries for

massive data, which has a rich literature [11]. We leveraged

the design from a CM-sketch [12] to build our construction for

handling a multiple events stream. Recent studies [17], [27]

have also extended some of the sketches to be persistent so

that they can support historical queries. Our constructions of

PBE are inspired by these studies.

Articles/messages to topic/event mapping. As discussed in

Section II-A, many techniques can be used to map an message

to one or more events, such as using hashtag or topic modeling

method like LDA [16], or topical word embedding model

[28], [29], [30], [31]. Hence, we propose this problem to be

orthogonal to our work and needs separate attention.

In our paper, we treat this as black box and open ended

for improvement. Separating this task comes with certain ad-

vantages. (a) Extensibility: The module can be upgraded with

different features, e.g. spam detection, bot message detection
without changing the underlying system of burst detection. (b)
Integration: Projects from different domain can be integrated

easily. For example, scientific projects involving gamma ray
bursts detection involves many data streams with illumination

magnitudes over time. Our technique is suitable of reducing

the storage space cost with guaranteed approximation.

VIII. CONCLUSION

This work investigates historical bursty event detection

through the design of succinct data summaries that explore

the efficiency and approximation quality tradeoff, where burst

is defined as the acceleration of incoming rates of event

mentionings for a given event. Ongoing and future works

include extending our study with a spatial dimension to find

historical bursty local events, and investigating how to merge

summaries from multiple streams so that our methods can

support geographically distributed streams.
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