
DEBJYOTI PAUL,	JIE CAO,	FEIFEI LI,	VIVEK SRIKUMAR
THE UNIVERSITY OF UTAH

Debjyoti Paul	currently	working	as	a	Senior	Research	Scientist	atLAB

LAB

MOTIVATION AND BACKGROUND

PROBLEM STATEMENT

QUERY PLAN ENCODERS

EXPERIMENTS

LAB
[1] Kraska, Tim, et al. "Sagedb: A learned database system." (2021).

Architecture	of	a	learned	database	system	[1]

LAB

TPC-H	Q18TPC-H	Q7

Partial	visualization	of	average	running	time	of	TPC-H	Query	7	and	18	respectively	with	respect	to	two	database	configuration	settings.	[2]

[2] From presentation slides of Vamsidhar Thummala and Shivnath Babu. 2010. iTuned: a tool for configuring and visualizing
database parameters. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data. ACM.

LAB

[3] Van Aken, Dana, et al. "Automatic database management system tuning through large-scale machine learning."
Proceedings of the 2017 ACM international conference on management of data. 2017.
[4] Zhang, Ji, et al. "An end-to-end automatic cloud database tuning system using deep reinforcement learning."
Proceedings of the 2019 International Conference on Management of Data. 2019.

Database	tuning	system	from	CDBTune[4]

OtterTune[3]	Database	optimization	pipeline

§ Understanding	workload	properties	is		

necessary.		

§ OtterTune performs	Factor	Analysis	on			

metrics	on	pre-executed	workload	on	that	

specific	DB.

§ CDBTune learns	by	examples	with	DRL	

agent.	Also,	learns	workload	from	scratch	for	

that	specific	DB.

LAB

A	query	plan	example.	It	is	challenging	to	comprehend	relevant	features	from	query	plans	for	optimal	execution.	
Only	an	expert	DBA	can	optimize	DB	configuration	for	queries,	but	it	is	a	tedious	and	manual	effort.

LAB

LAB

Database	workload	defined	as,
𝑊 = 𝑞!, 𝜃! , 𝑞", 𝜃" , …… , 𝑞#, 𝜃#

where	𝜃! is	normalized	weight	of	query	𝑞! in	workload	𝑊 such	that	∑!"#$ 𝜃! = 1.	

A	query	𝑞! can	generate	different	query	plans	say	{𝑝%, 𝑝&} on	different	DB	instances,	based	on	database	
configuration	and	underlying	data.	

It	will	be	wise	to	rewrite	𝑊 as,
𝑊 = { 𝑝!, 𝜃! , 𝑝", 𝜃" , …… , 𝑝$, 𝜃$ }

where	𝜃! is	normalized	weight	of	query	plan	𝑝! in	workload	𝑊 such	that	∑!"#' 𝜃! = 1.	

LAB

Represent	a	query	plan	𝑝% with	a	distributed	representation	model i.e.,	a	query	plan	
encoder that	captures	the	inherent	characteristics	such	as	structure,	
computational	performance,	and	database	feature	manifests embedded	within	a	
query	plan	structure.

Query	plan	representations	can	help	aggregate	similar	queries.	With	more		insights	on	queries	from	encodings,	DBAs	(or	
downstream	AI-based	tasks)	will	optimize	database	performance	efficiently.

Query	Plan	Encoders

Plan	Structure	Encoder

Plan	Performance	Encoder

LAB

§ Independent	Query	Plan	Features

§Diverse	Plan	Structure	

§Modeling	Computational	Performance

§Environment	Dependencies

§Domain	Adaptation	

LAB

Table	1:	The	taxonomy	of	operator	types	for	every	node

Level Operator Subtypes

Level 1

Aggregate, Append, Count, Delete, Enum, Gather,
Aggregate (Group, GroupAggregate), Insert, Intersect, Join
(Nested Loop), Limit, LockRows, Loop, ModifyTable,
Network, Result, Scan, Sequence, Set(SetOp), Sort, Union,
Unique, Update, Window, WindowAgg, Materialize

Level 2
And, CTE, Except, Exists, Foreign, Hash, Heap, Index,
IndexOnly, LoopHash, Merge, Or, Query, Quick, Seq,
SetOp, Subquery, Table, WorkTable

Level 3 Anti, Bitmap, Full, Left, Parallel, Partial, Partition, Right,
Semi, XN

Figure	1:	Query	Plan	Example:	TPC-H	Query	Template	5

LAB

Figure	1:	Query	Plan	Example:	TPC-H	Query	Template	5 Table	2:	Three	Tree	Traversal	Strategies	for	Node	Sequencing	on	Figure	1	Plan

Strategy Node Sequence

DFS
Filter–,	Sort–,	Aggregate–,	Join-Hash-,	Join–,	Join-Hash-,	
Scan-Heap-Bitmap,	Hash–,	Join–,	Join–,	Scan-Index-,	Scan-
Seq-,	Scan-Heap-Bitmap,	Scan-Index-,	Scan-Seq	

BFS
Filter–,	Sort–,	Aggregate–,	Join-Hash-,	Join–,	Scan-Seq-,	Join-
Hash-,	Scan-Index-,	Scan- Heap-Bitmap,	Hash–,	Join–,	Join–,	
Scan-Heap-Bitmap,	Scan-Index-,	Scan-Seq-

DFS
Bracket

(Filter–,	(Sort–,	(Aggregate–,	(Join-Hash-,	(Loop–Nested,	
(Join-Hash-,	(Hash–,	(Loop–Nested,	(Loop–Nested,	
ScanIndex-,	Scan-Seq-)	Scan-Heap-Bitmap))	Scan-
IndexBitmap)	Scan-Index-)	Scan-Seq-))))

LAB

a.	(((→	 1,1,1 →	 [0,0,1,0,0,1,0,0,1,0,0,0],	

b.	(() ((→	 1,2,1 →	 [0,0,1,0,1,0,0,0,1,0,0,0],	

c.	(((()) ((→	 1,1,2,2 →	 [0,0,1,0,0,1,0,1,0,0,1,0]

DFS	Bracket	Strategy

LAB

Figure	2:	Structure	Encoder	modeling	with	a	pair	of	serialized	plans	𝒑𝒊 and	𝒑𝒋.

LAB

1) Input Sequence

LAB

Table	3:	The	properties	from	query	execution	plan	that	are	common	to	all	the	operators	and	a	few	specific	
to	major	operators	like	Scan,	Join,	Sort	and	Aggregate.

Operator Plan Node Features

All
Actual	Loops	,	Actual	Rows	,	Local	Dirtied	Blocks	,	Local	Hit	Blocks	,	Local	Read	Blocks	,	Local	Written	
Blocks	,	Plan	Rows	,	Plan	Width	,	Shared	Dirtied	Blocks	,	Shared	Hit	Blocks	,	Shared	Read	Blocks	,	Shared	
Written	Blocks	,	Temp	Read	Blocks	,	Temp	Written	Blocks	,	Parent	Relationship	,	Plan	Buffers

Scan Relation	Name,	Scan	Direction,	Index	Name,	Index	Condition,	Scan	Condition,	Filter,	Rows	Removed,	Heap	
Blocks,	Parallel,	Recheck	Condition

Join Join	Type,	Inner	Unique,	Merge	Condition,	Hash	Condition,	Rows	Removed	by	Join	Filter,	Parent	
Relationship,	Hash	Algorithm,	Hash	Algo,	Hash	Buckets,	Hash	Batches,	Peak	Memory

Sort Sort	Type,	Sort	Method,	Sort	Space,	Sort	Key,	Sort	Space	Type,	Sort	Space	Used,	Peak	Memory

Aggregate Strategy,	Hash	Algo,	Hash	Buckets,	Hash	Batches,	Parallel	Aware,	Partial	Mode,	Peak	Memory

LAB

An	encoder	for	each	major	functional	operators	
(i)	Scan	 (ii)	Join		 (iii)	Sort		 (iv)	Aggregate	 (v)	Others

Regression	Task	Labels:
(i)	Execution	Time	(Latency)	 (ii)	Cost (iii)	Startup	Time

Table	4:	Meta	Features	and	DB	Settings	used	as	input	features	to	Computational	Performance	Encoder

Strategy Node Sequence

Meta	Features rel_name,	att_name,	rel_tuples,	rel_pages,	rel_file_node,	rel_access_method,	
n_distinct,	distinct_values,	selectivity,	avg_width,	correlation

DB	Settings

bgwriter_delay,	shared_buffers,	bgwriter_lru_maxpages,	wal_buffers,	random_page_cost,	
bgwriter_lru_multiplier,	checkpoint_completion_target,	checkpoint_timeout,	cpu_tuple_cost,	
max_stack_depth,	deadlock_timeout,	default_statistics_target,	work_mem effective_cache_size,	
effective_io_concurrency,	join_collapse_limit,	from_collapse_limit,	maintenance_work_mem

LAB

Figure	3:	The	multi-column	deep	neural	network(DNN)	for	our	computational	performance	encoder.

LAB

Figure	4:	A	bird-view	diagram,	showing	the	role	of	plan	encoders	for	a	downstream	task.
Latency	Prediction	Task:	Given a query plan, meta-features of the database, and a new database configuration settings, the model predicts the latency of the query
on the given database knob configuration.

LAB

§ Crowdsourced	Plan	Dataset	[2]	: For	Structure	Encoder	training.	131,521	structurally	diverse	plans.	14,016	similar	plan.	

§ Industry	Standard	Benchmarks	TPC-H	and	TPC-DS: For	Performance	Encoder	training,	evaluation	and	ablation	studies.	

§ Spatial	Benchmarks:	For	Latency	Prediction	task.

§ Jackpine	[3]: Revised	Jackpine	benchmark	supporting	current	PostGIS and	new	shapefiles.	Contains	diverse	queries	on	spatial	
join	with	multipolygons,	lines,	points	and	combination	of	them.	

§ Open	Street	Map	(OSM): This	workload	contains	queries	for	spatial	overlap,	distance	and	pair	point	routing.	Used	OSM	map	of	
Los	Angeles	County	and	New	York	City.	

§ Join-Order	Benchmarks:	For	Query	Classification	task.

§ Cloud	resources: https://cloudlab.us
We	used	50+	cloud	machine	instances	for	running	our	experiment	and	benchmarks.

§ Tools:

(a) GITHUB:	WORKLOAD_SCRIPTS (b)	GITHUB:	JACKPINE (c)	GITHUB:	OSM_BENCHMARK

[2] PostgreSQL's explain analyze made readable: https://explain.depesz.com/
[3] Suprio Ray, Bogdan Simion, and Angela Demke Brown. 2011. Jackpine: A benchmark to evaluate spatial database performance.
In 2011 IEEE 27th International Conference on Data Engineering.

https://cloudlab.us/
https://github.com/debjyoti385/workload_scripts
https://github.com/debjyoti385/jackpine
https://github.com/debjyoti385/osm_benchmark

LAB

§ Pretrained	Structure	and	Performance	Encoders:	Trained	with	Crowdsourced	Query,	TPC-H	and	TPC-DS	benchmarks.

§ Finetuning	In-Domain	Data:	Jackpine	and	OSM	workload	instances	with	120	LHS-generated	database	settings.

§ Test	Data:	Jackpine	and	OSM	workload	instances	with	50	LHS-generated	database	settings.

Database Settings Unit Median 95th Percentile 5th Percentile
bgwriter_delay ms 4860.00 9,421.05 456.00
bgwriter_lru_maxpages integer 515.00 958.05 55.00
checkpoint_timeout ms 300.00 540.00 60.00

deadlock_timeout ms 300,000.00 540,000.00 26,000.00

default_statistics_target integer 4827.50 9,563.00 454.85

effective_cache_size bytes 1,048,576.00 1,966,080.00 131,072.00

effective_io_concurrency integer 52.00 96.00 6.00

maintenance_work_mem bytes 7,340,032.00 15,728,640.00 876,953.60

max_stack_depth integer 3,072.00 5,120.00 417.95

random_page_cost number 5,028.60 9,507.39 560.40

shared_buffers bytes 2,0977,152.00 3,932,160.00 131,072.00

wal_buffers bytes 130,624.00 131,072.00 12,416.00

work_mem bytes 15,728,640.00 31,457,280.00 1,048,576.00

LAB

Figure	5:	Latency	of	spatial	queries	(>	500	ms)	from	Jackpine[3] and	OSM	benchmark	with	Error	Analysis.	
Blue	bar is	median	of	latency,	Orange	line ranges	between	5th	and	95th	percentile	of	query	latency.
Black	bar is	mean	absolute	error	(MAE),	a	low	black	bar on	a	high	orange	line bar	means	better	results.	

[3] Suprio Ray, Bogdan Simion, and Angela Demke Brown. 2011. Jackpine: A benchmark to evaluate spatial database performance.
In 2011 IEEE 27th International Conference on Data Engineering.

LAB

Figure	6:	Ablation	study	of	mean	absolute	error	(MAE)	(y-axis	in	logarithmic	scale)	for	the	all	
the	TPC-DS	query	templates	(x-axis)	with	scale	factor	100.

LAB

Table	5:	Queries	from	TPC-DS	SF-100	test	set	binned	based	on	
𝑅 factor	for	all	the	models.

Models 𝑅 ≤ 1.5 1.5 < 𝑅 ≤ 2.0 𝑅 > 2.0

TAM	[4] 51% 22% 27%

SVF	[5] 68% 15% 17%

RBF	[6] 85% 6% 9%

QPPNet [7] 89% 7% 4%

Plan	Encoder 91% 7% 2%

[4] M. Akdere et al. Learning-based query performance modeling and prediction. In ICDE ’12.
[5] J. Li et al. Robust estimation of resource consumption for SQL queries using statistical techniques. VLDB ’12
[6] H. Hacigumus et al. Predicting Query Execution Time: Are Optimizer Cost Models Really Unusable? In ICDE ’13.
[7] Marcus, Ryan, and Olga Papaemmanouil. "Plan-Structured Deep Neural Networks for Query Performance Prediction."
The VLDB journal (2019).

LAB

Models
Validation Test

template cluster template cluster

Structure	only 0.2452 0.4670	 0.1946 0.3847

Performance	only 0.1645 0.2973 0.0977 0.1769

Both	encoders 0.2783 0.5573 0.2518
(+29%)

0.4647
(+21%)

Both	encoders	10%	data 0.2000 0.4927 0.151 0.334

Both	encoders	30%	data 0.2555 0.5228 0.1843 0.3855

Table	6:	F1-scores	of	models	for	template	and	cluster	query	classification	
task	on	validation	and	test	set.

Join	Order	Dataset
Ø 113	query	templates

Ø 33	clusters

Ø Total	of	16,229	different	plans	on	
different	DB	configurations.
§ Train:	13,505	plans
§ Validation:	1,362
§ Test:	1,362

LAB

Figure	7:	Results	of	finetuning	structure	encoder	on	TPC-H,	TPC-DS,		and	SPATIAL.	
Note:	Structure	Encoder	is	pretrained	on	crowdsourced	plan	dataset.

Taxonomies Descriptions

Scratch Untrained	Encoder	weights	initialized.

Fixed Pretrained	Encoder	no	finetuning	i.e.,	
weights	freeze.

Fine Pretrained	Encoder	with	finetuning.	

FNN Fully	connected	Neural	Network

Sparse	AE Sparse	Auto-Encoder

LSTM-PPSR Long	Short	Memory	Neural	Network	for	
plan	pair	similarity	task

Encoder	PPSR Structure	Encoder	for	Plan	Pair	Similarity	
Regression	Task

LAB

(a)	TPC-DS	SF-8	benchmark.

Figure	12:	Comparison	of	MAEs	for	pretrained	vs	scratch	models	with	0.3	fraction	of	finetuning	data.

(b)	Spatial	benchmark.

LAB

Near	Optimal	Configurations

Jackpine	workload

bgwriter_delay 6919
bgwriter_lru_maxpages 957
bgwriter_lru_multiplier 2.91304
checkpoint_completion_target 0.993648
checkpoint_timeout 480
cpu_tuple_cost 8.14646
deadlock_timeout 180000
default_statistics_target 2090
effective_cache_size 97024
effective_io_concurrency 80
maintenance_work_mem 5242880
max_stack_depth 1024
random_page_cost 8363.61
shared_buffers 1703936
wal_buffers 73856
work_mem 24117248

bgwriter_delay 5777

bgwriter_lru_maxpages 665

bgwriter_lru_multiplier 6.34007

checkpoint_completion_target 0.326022

checkpoint_timeout 240

cpu_tuple_cost 5.30396

deadlock_timeout 240000

default_statistics_target 6658

effective_cache_size 1703936

effective_io_concurrency 99

maintenance_work_mem 7340032

max_stack_depth 4096

random_page_cost 41.2078

shared_buffers 1310720

wal_buffers 131072

work_mem 9437184

bgwriter_delay 6856

bgwriter_lru_maxpages 518

bgwriter_lru_multiplier 7.26019

checkpoint_completion_target 0.69164

checkpoint_timeout 480

cpu_tuple_cost 4.10426

deadlock_timeout 300000

default_statistics_target 2837

effective_cache_size 1966080

effective_io_concurrency 58

maintenance_work_mem 14680064

max_stack_depth 4096

random_page_cost 8395.83

shared_buffers 2490368

wal_buffers 131072

work_mem 3145728

OSM	workload	Los	Angeles OSM	workload	New	York	City	

LAB

§ Representation	learning	with	AI	encoders	for	database	queries	works.	

§ May	be	using	structure	and	performance	encoder	independently	is	not	a	bad	idea.

§ Large	scale	pretraining	with	small	finetuning	is	better.

§ Plan	encoders	as	a	core	DB	tool	for	workload	characterization	and	gauging	resource	requirements.

§ AI	powered	pretrained	encoders	prepackage	with	database	management	systems

§ Can	be	integrated	with	Reinforcement	Learning	approaches	to	achieve	instance	optimality.

LAB

§ Apply	Transformer	with	ResNet architecture for	performance	encoders.

§ Obtain	large	scale	training	dataset	with	many	different	configurations,	I	utilized	cloudlab.us for	

running	databases	on	cloud	instances,	and	it	takes	a	while	to	prepare	data.	Need	for	an	open-

sourced		query,	execution-plan	dataset	from	cloud	databases.

§ Add	experiment	to integrate	plan encoder	with Reinforcement	Learning	based	database tuning	

applications.

