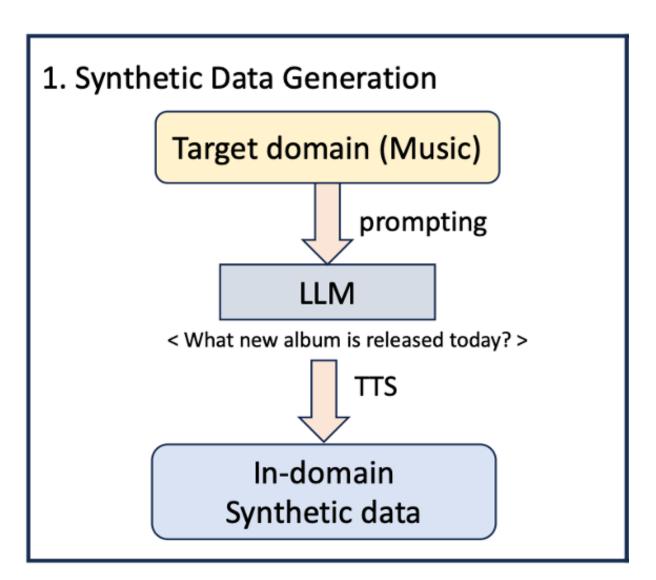


A Domain Adaptation Framework for Speech Recognition Systems with Only Synthetic data

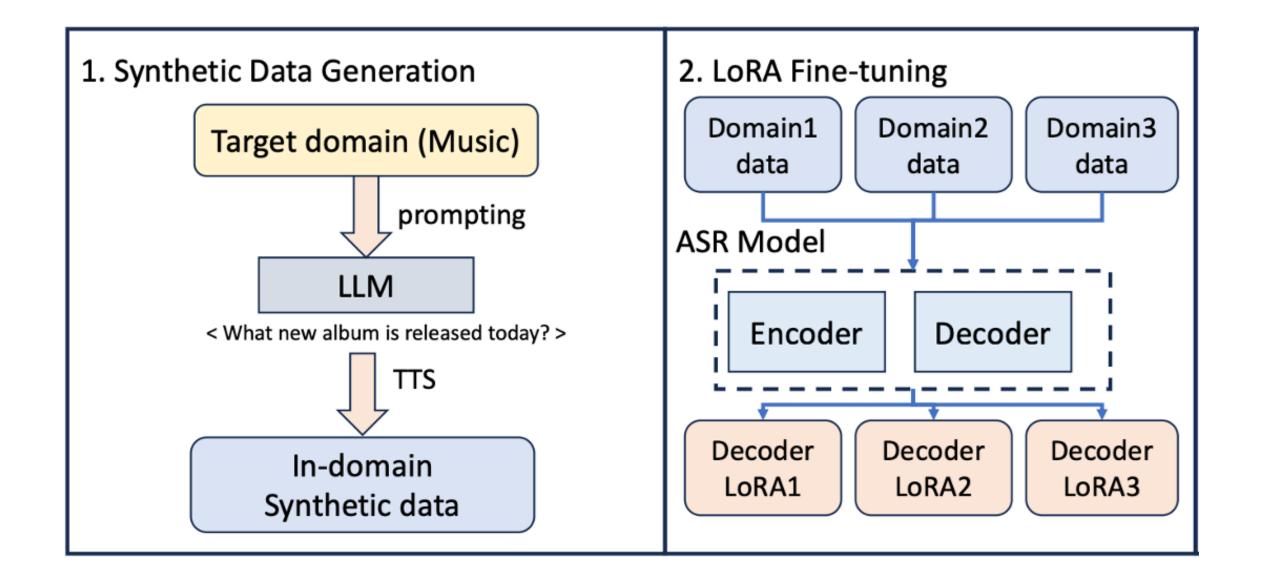
Problem Statement

- Given a pretrained ASR model (Whisper in this work), how can we adapt the model weights to:
 - o Perform better (lower WER) on some language-defined domains.
 - No access to real speech training data (except for the test sets used for evaluation)
 - O No performance regression on out-of-domain data
- Language-defined domain: Speech utterances with content relating to a domain. For example:
 - Sports: Where was the world cup help in 2016?
 - Weather: How is the weather in Seattle today?

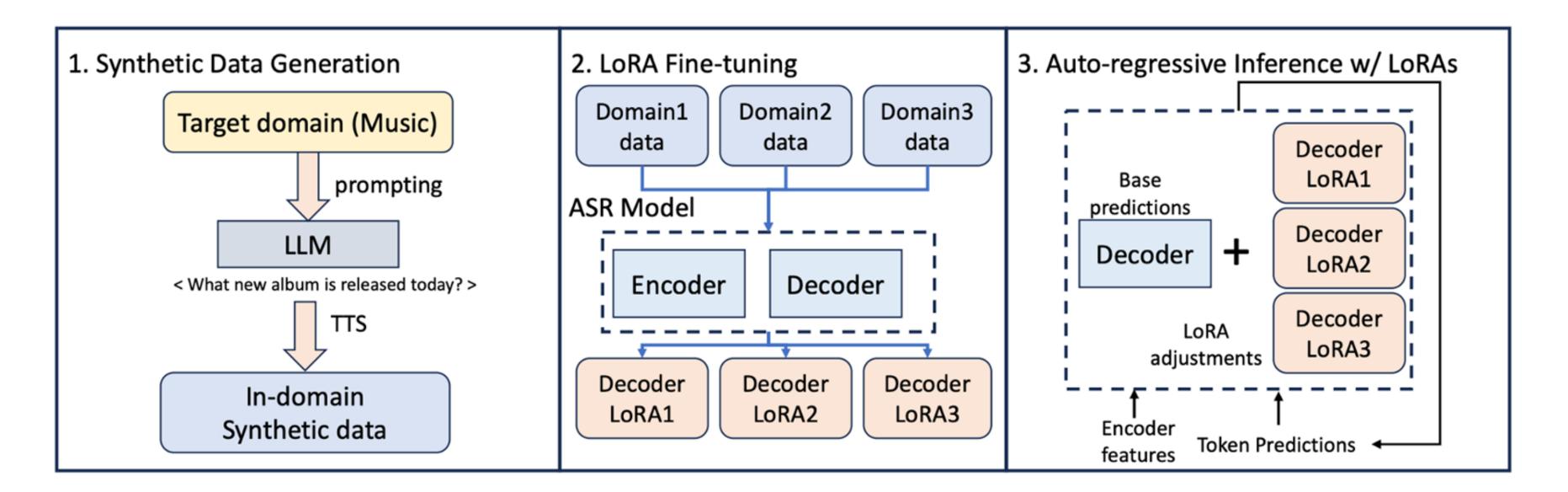
Proposed Method Overview



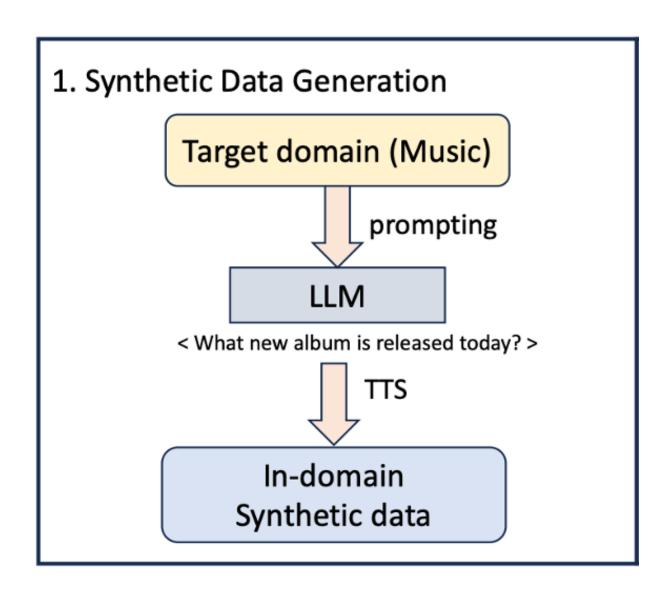
Proposed Method Overview



Proposed Method Overview

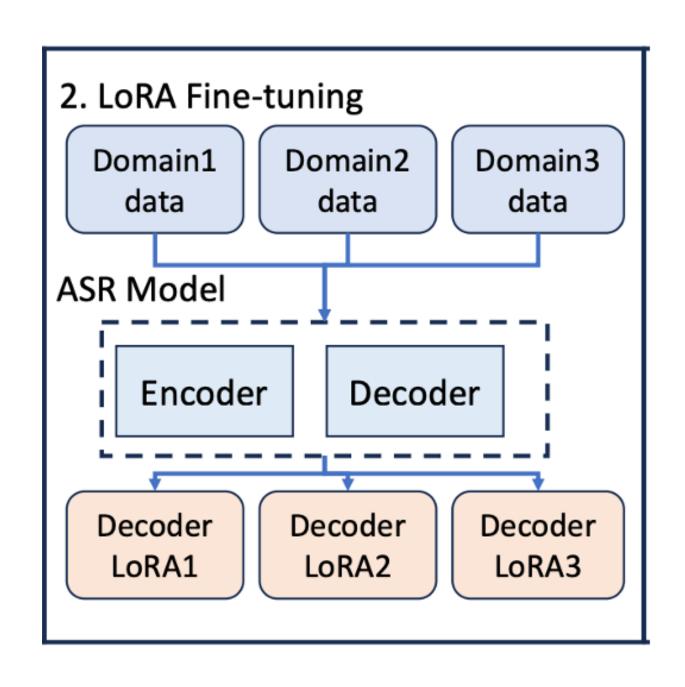


Stage 1: Synthetic text generation



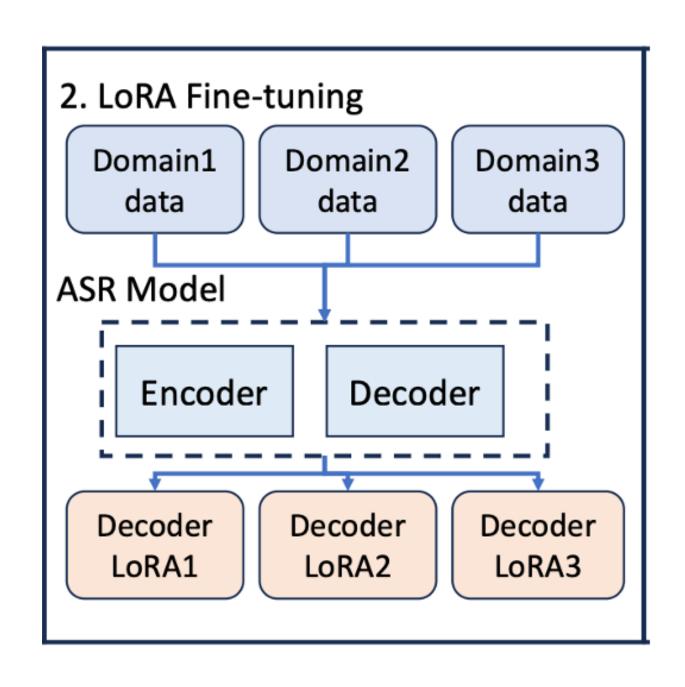
- We prompt LLM (Llama3-70B) to generate large amount of synthetic text for a specific domain
- We use Codec [1] text generation pipeline
- Advantage: No seed text data needed (as opposed to [2])
- We feed our generated text data into a TTS system [3] to create paired text-audio data for ASR
- [1] Zheng et al. CodecLM: Aligning Language Models with Tailored Synthetic Data. Findings of ACL 2024.
- [2] Huang et al. Text Generation with Speech Synthesis for ASR Data Augmentation. Arxiv 2023.
- [3] Wu et al. Transformer-based acoustic modeling for streaming speech synthesis. INTERSPEECH 2021.

Stage 2: Model tuning on synthetic data



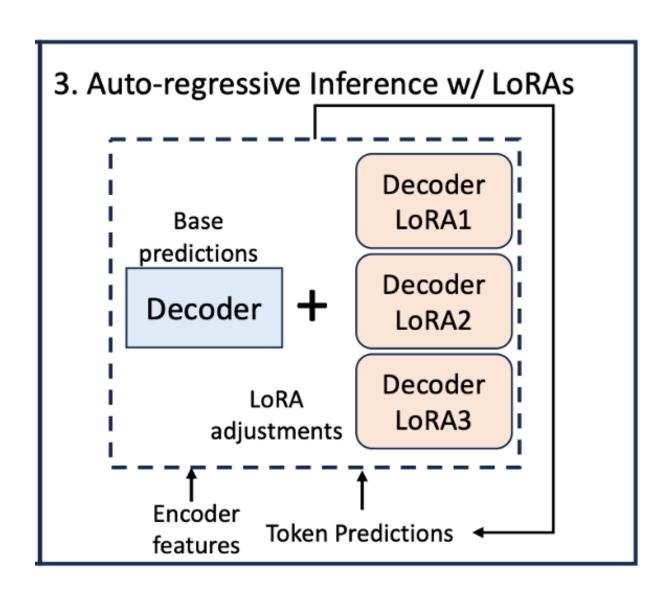
- We use the synthetic data in stage 1 to finetune Whisper [4]. Some experimentally verified observations (refer paper):
 - It is better to tune only the decoder instead of the whole model (encoder + decoder)
 - It is better to tune with LoRA [5] adapters instead of full fine-tuning
 - Advantage: LoRA adapters are efficient in both runtime and memory usage
- We train one LoRA adapter for each domain using corresponding synthetic data generated in Stage 1
- [4] Radford et al. Robust speech recognition via large-scale weak supervision. ICML 2023.
- [5] Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022.

Stage 2: Model tuning on synthetic data



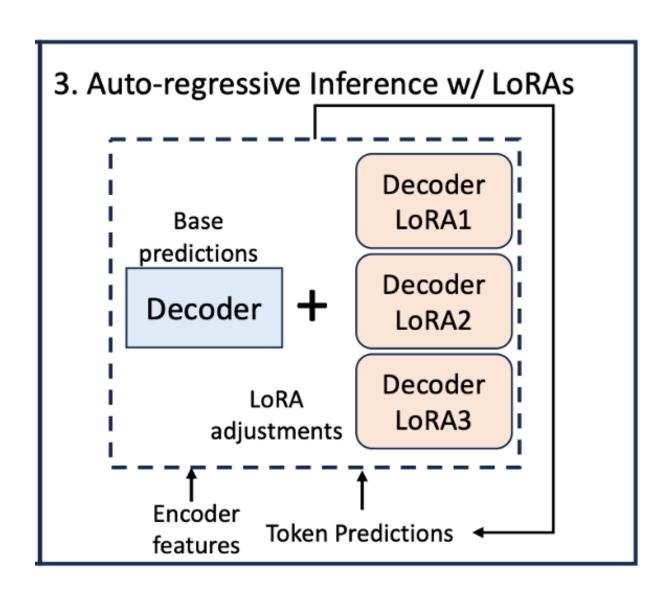
- We use the synthetic data in stage 1 to finetune Whisper [4]. Some experimentally verified observations (refer paper):
 - It is better to tune only the decoder instead of the whole model (encoder + decoder)
 - It is better to tune with LoRA [5] adapters instead of full fine-tuning
 - Advantage: LoRA adapters are efficient in both runtime and memory usage
- We train one LoRA adapter for each domain using corresponding synthetic data generated in Stage 1
- [4] Radford et al. Robust speech recognition via large-scale weak supervision. ICML 2023.
- [5] Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022.

Stage 3: Inference with multiple adapters



- From stage 2, we have multiple LoRA adapters; one adapter per domain.
- During inference, how can we <u>efficiently</u> process an utterance <u>without</u> <u>prior domain knowledge</u>?
 - Solution 1: Original model → text (domain) classifier → select corresponding LoRA adapter
 - 2 passes
 - Cannot extend to new domain (need to re-train the text classifier)
 - **Solution 2:** Generate speech transcription with each LoRA adapter, then select the transcription with highest confidence (avg. predicted token probabilities)
 - Slow: k adapters -> k passes
 - Can extend to new domain

Stage 3: Inference with multiple adapters



- From stage 2, we have multiple LoRA adapters; one adapter per domain.
- During inference, how can we <u>efficiently</u> process an utterance <u>without</u> <u>prior domain knowledge</u>?
 - Solution 1: Original model → text (domain) classifier → select corresponding LoRA adapter
 - 2 passes
 - Cannot extend to new domain (need to re-train the text classifier)
 - **Solution 2:** Generate speech transcription with each LoRA adapter, then select the transcription with highest confidence (avg. predicted token probabilities)
 - Slow: k adapters -> k passes
 - Can extend to new domain

Stage 3: Auto-regressive decoding with LoRAs

Algorithm 1 Auto-regressive decoding with multiple LoRAs

```
Require: W, \{(A_i, B_i)\} for i \in [k], x: encoder features

1: tokens \leftarrow []

2: while [eos] \notin tokens do

3: h = Softmax(W(x, tokens))

4: (next_0, c_0) = Argmax(h), Max(h) \triangleright c denotes the confidence

5: h_i = Softmax((W + B_iA_i)(x, tokens)) for i \in [k]

6: (next_i, c_i) = Argmax(h_i), Max(h_i) for i \in [k]

7: SELECT next from \{next_0, next_1, \ldots, next_k\}

8: INSERT next to tokens

9: end while

10: return tokens
```

• Gist:

- Generate one token at a time (in an autoregressive manner)
- For each token, generate all tokens predicted by each LoRA adapter
- We use the confidence level of each token to select the best one

Experiment settings

• Dataset

• We evaluate on three domains: music, weather, sports

• Validation data

- Real speech samples collected via Meta RayBan glasses
- Manually categorized into each of the three domain

	music	weather	sports
Synthetic dataset	44K	31K	46K
Evaluation dataset	2.1K	2.8K	5.1K

Number of samples for each domain on train/test sets

Experiment settings

• Evaluation metric:

Word Error Rate without wake words (e.g., Hey Meta)

Baselines

- FT: full fine-tuning (decoder) (for each domain)
- LoRA-ft: fine-tuning (decoder) with LoRA (for each domain)
- FT-Multi: full fine-tuning (decoder) on 3 domain synthetic data combined
- LoRA-ft-Multi: fine-tuning (decoder) with LoRA on 3 domain synthetic data combined

Results

	Train set	music	weather	sports
Original	-	27.94	14.97	15.59
FT	TTS-Music	23.20 († 17.0%)	$14.45 \ (\uparrow 3.5\%)$	$20.1 (\downarrow 28.8\%)$
FT	TTS-Weather	33.05 (18.3%)	12.10 († 19.2%)	$17.7 \ (\downarrow 13.5\%)$
FT	TTS-Sports	25.05 (\ 10.3\%)	15.96 (\(\dagger 6.6\%)	15.3 († 1.9%)
LoRA-ft	TTS-Music	23.23 († 16.8%)	13.27 († 11.3%)	16.51 (\ 5.9\%)
LoRA-ft	TTS-Weather	26.65 († 4.6%)	11.70 († 21.8%)	15.08 († 3.3%)
LoRA-ft	TTS-Sports	27.14 († 2.9%)	$14.05 (\uparrow 6.1\%)$	13.37 († 14.2%)
FT-Multi	TTS(M+W+S)	24.71 († 11.6%)	24.53 (\ 64.0\%)	15.84 (\ 1.6%)
LoRA-ft-Multi	TTS(M+W+S)	25.09 († 10.2%)	13.70 († 8.4%)	14.61 († 6.3%)
DAS	TTS(M/W/S)	24.87 († 11.0%)	12.39 († 17.2%)	13.98 († 10.3%)

- FT and LoRA-ft: one model for each domain
- FT-Multi/LoRA-ft-Multi/DAS (ours): a single model for all domains
- DAS is the only method that can extend to new domains (without retraining)
 - only need to train new LoRA adapter and attach to the model

Out-of-domain regression experiment

	OOD_1	OOD_2	OOD_3	OOD_4
Original	12.02	5.04	10.87	10.36
LoRA-ft Multi	13.79	5.78	11.48	10.82
DAS	12.25	5.1	11.06	10.29
% change	-1.02	-1.01	-1.02	+0.99

TABLE V

ASR PERFORMANCE COMPARISON BETWEEN DAS AND ORIGINAL (UNADAPTED) MODEL ACROSS FOUR OUT-OF-DOMAIN TEST SETS. OOD_1 : LibriSpeech test-other, OOD_2 : LibriSpeech test-clean, OOD_3 : Fleurs-En, OOD_4 : Voxpopuli-En.

Our method shows minimal out-of-domain performance regression.

Conclusion

- We propose a novel framework for ASR systems that can
 - Improve WER for a set of target language-defined domains.
 - Minimal generalizability loss.
 - No real data needed.

Feel free to refer to our paper to more details.

