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Problem Statement

● Given a pretrained ASR model (Whisper in this work), how can we adapt the model 
weights to:
○ Perform better (lower WER) on some language-defined domains.
○ No access to real speech training data (except for the test sets used for evaluation)

○ No performance regression on out-of-domain data

● Language-defined domain: Speech utterances with content relating to a domain. For 
example:
○ Sports: Where was the world cup help in 2016?
○ Weather: How is the weather in Seattle today?
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Stage 1: Synthetic text generation

● We prompt LLM (Llama3-70B) to generate large amount of 
synthetic text for a specific domain

● We use Codec [1] text generation pipeline

● Advantage: No seed text data needed (as opposed to [2]) 
● We feed our generated text data into a TTS system [3] to create 

paired text-audio data for ASR

[1] Zheng et al. CodecLM: Aligning Language Models with Tailored Synthetic Data. Findings of ACL 2024.
[2] Huang et al. Text Generation with Speech Synthesis for ASR Data Augmentation. Arxiv 2023.
[3] Wu et al. Transformer-based acoustic modeling for streaming speech synthesis. INTERSPEECH 2021.



Stage 2: Model tuning on synthetic data

● We use the synthetic data in stage 1 to finetune Whisper [4]. Some 
experimentally verified observations (refer paper):
○ It is better to tune only the decoder instead of the whole model 

(encoder + decoder)
○ It is better to tune with LoRA [5] adapters instead of full fine-tuning
○ Advantage: LoRA adapters are efficient in both runtime and 

memory usage
● We train one LoRA adapter for each domain – using corresponding 

synthetic data generated in Stage 1

[4] Radford et al. Robust speech recognition via large-scale weak supervision. ICML 2023.
[5] Hu et al. LoRA: Low-Rank Adaptation of Large Language Models. ICLR 2022.
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● From stage 2, we have multiple LoRA adapters; one adapter per domain.
● During inference, how can we efficiently process an utterance without 

prior domain knowledge?
○ Solution 1: Original model → text (domain) classifier → select 

corresponding LoRA adapter
■ 2 passes
■ Cannot extend to new domain (need to re-train the text classifier)

○ Solution 2: Generate speech transcription with each LoRA adapter, 
then select the transcription with highest confidence (avg. predicted 
token probabilities)
■ Slow: k adapters -> k passes
■ Can extend to new domain

Stage 3: Inference with multiple adapters
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● Gist:
○ Generate one token at a time (in an 

autoregressive manner)
○ For each token, generate all tokens predicted 

by each LoRA adapter
○ We use the confidence level of each token to 

select the best one 

Stage 3: Auto-regressive decoding with LoRAs



Experiment settings

● Dataset
○ We evaluate on three domains: music, weather, sports

● Validation data 
○ Real speech samples collected via Meta RayBan glasses
○ Manually categorized into each of the three domain

Number of samples for each domain on train/test sets



Experiment settings

● Evaluation metric: 
○ Word Error Rate without wake words (e.g., Hey Meta)

● Baselines
○ FT: full fine-tuning (decoder) (for each domain)
○ LoRA-ft: fine-tuning (decoder) with LoRA (for each domain)
○ FT-Multi: full fine-tuning (decoder) on 3 domain synthetic data combined
○ LoRA-ft-Multi: fine-tuning (decoder) with LoRA on 3 domain synthetic data combined



● FT and LoRA-ft: one model for each domain
● FT-Multi/LoRA-ft-Multi/DAS (ours): a single model for all domains
● DAS is the only method that can extend to new domains (without retraining)
○ only need to train new LoRA adapter and attach to the model

Our method can maintain (most) improvements across all three domains 

Results



Out-of-domain regression experiment

Our method shows minimal out-of-domain performance regression.



Conclusion

● We propose a novel framework for ASR systems that can
○ Improve WER for a set of target language-defined domains.
○ Minimal generalizability loss.
○ No real data needed.

Feel free to refer to our paper to more details.

Look forward to related paper on representation learning (encoder) with synthetic TTS data at Interspeech 2025.
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