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Abstract
We investigate the use of synthetic speech to enhance the per-
formance of Automatic Speech Recognition (ASR) systems.
While pre-trained ASR models have demonstrated impressive
capabilities, their performance can still vary across different
conditions and speakers. Conversely, text-to-speech technology
allows for precise control over factors such as environmental
noise and speaker accents, producing clean speech that poses
fewer challenges for ASR systems. Building on this insight,
we propose a novel method called R2S (Real-to-Synthetic),
which aligns the representation spaces of real and synthetic
speech. Our approach incorporates a Gradient Reversal Layer
to promote invariant representations between real and synthetic
speech, and a Residual-Vector Quantization module to gener-
ate pseudo-labels from synthetic speech, guiding the representa-
tions of real speech. Our experimental results on three datasets
demonstrate that the proposed method can boost ASR perfor-
mance by 4-5% and successfully align the representation space
of real and synthetic speech. Our qualitative results further
demonstrate that R2S can suppress speaker-dependent features
thanks to the alignment with synthetic speech.
Index Terms: speech recognition, synthetic data, representa-
tion learning

1. Introduction
Automatic Speech Recognition (ASR) systems have seen re-
markable advancements, partly driven by the power of pre-
trained models such as Whisper [1]. These systems have
demonstrated impressive accuracy across a wide range of sit-
uations, making them increasingly reliable in various applica-
tions. However, their performance is not without limitations.
Factors such as environmental noise, speaker accents, and in-
herent voice variances can introduce challenges in the speech
encoding process that converts raw speech to high-level repre-
sentations, leading to inaccuracies in speech recognition. To
address this issue, speaker adaptation [2–4] and domain adapta-
tion [5–7] methods are proposed.

These adaptation methods have traditionally focused on
the role of speaker attributes/conditions in ASR systems, ei-
ther for personalization or generalization. Personalization ap-
proaches [2–4, 8] enable speaker attributes or conditions to in-
fluence the predictions while generalization approaches [9–12]
encourage speaker-invariant or condition-invariant features for
robust ASR.
Inspired by the second line of adaptation methods, we ex-

plore speaker-invariant representation learning. Unlike previ-
ous methods that require speaker attribute labels (e.g., speaker
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LS-test-other Voxpopuli-en VCTK
Real 12.39 10.38 4.56
Synthetic 6.91 1.67 2.61

Table 1: ASR (Word-Error-Rate) performance of Whisper-base
on Librispeech test-other, Voxpopuli English test set, and VCTK
dataset for real (original test sets) and synthetic (text-to-speech)
speech. The performance gap suggests potential performance
gain when shifting representations from real to synthetic speech.

ID) to learn speaker-invariant representations, we only use syn-
thetic speech for adaptation. Motivated by the fact that synthetic
speech (of a particular target speaker) is invariant to speaker,
noise, accent, and other undesired properties, leading to a lower
Word-error-rate (WER) (see Table 1) compared to real speech
of the same content, we investigate whether aligning the rep-
resentation space of real and synthetic speech can help im-
prove ASR performance. To achieve this, we introduce R2S ,
a novel method that contains two components: 1) a Gradient
Reversal Layer (GRL) placed after the encoder that classifies
whether the input is real or synthetic speech to encourage the
encoder to produce real-synthetic invariant features, and 2) a
linear head trained with Connectionist Temporal Classification
loss (CTC-loss) using discrete tokens generated by a Resid-
ual Vector Quantizer (Residual-VQ) on features extracted from
synthetic speech. Together, the two components enable the en-
coder of ASR systems to better align with the representations of
synthetic speech. Our experimental results with the pre-trained
Whisper model on three datasets, namely, LibriSpeech, Com-
monVoice, and VCTK, demonstrate that the proposed method
can boost ASR performance by 4-5% and successfully align the
representation space of real and synthetic speech. In summary,
the contributions of this paper are as follows: a) We present
the first study on leveraging synthetic speech to guide the repre-
sentation learning of real speech; b) We propose R2S , a novel
method that aligns real and synthetic speech via two compo-
nents: 1) a GRL that encourages the encoder to produce real-
synthetic invariant features, and 2) a mechanism to quantize
synthetic features into discrete tokens to guide the real speech
representation learning process via a CTC-loss; c) We validate
the usefulness of the proposed method on three speech recogni-
tion datasets.

2. Related work
Existing speaker adaptation methods can be categorized into
two main approaches. The first approach leverages the iden-
tity of speakers to extract speaker representations, which are



then used to generate personalized predictions in ASR systems.
For instance, Senior et al. [2] and Peddinti et al. [3] adapt ASR
systems using i-vectors. Pironkov et al. [13] and Adi et al. [8]
explore multi-task learning, where speech recognition is trained
jointly with auxiliary tasks such as speaker recognition [8] or
gender classification [4, 13, 14]. The second approach focuses
on adversarial learning-based speech recognition, intending to
make acoustic representations independent from speaker char-
acteristics or recording conditions. This line of work aims to
improve the robustness and generalization of ASR systems.
Tsuchiya et al. [9] and Meng et al. [10] propose using a Gra-
dient Reversal Layer (GRL) [3] in conjunction with speaker
classification during ASR training to encourage the model to
produce speaker-invariant features, achieving relative WER im-
provement ranging from 4-7%. Serdyuk et al. [11] implements
GRL along with noise condition classification to produce noise-
invariant features for speech recognition. Liang et al. [12] use
Invariant Representation Learning (IRL) to encourage speech
recognition models to generate features similar to clean condi-
tions, given augmented noisy speech. Sun et al. [5] explore ad-
versarial learning with accent speech, where they use a gradient
reversal layer followed by an accent classifier to encourage the
speech recognition model to generate accent-invariant features.

Tjandra et al. [15] propose a novel framework that in-
tegrates speech recognition and synthesis into a closed-loop
system, mimicking the human speech communication process.
They demonstrate that this mutual learning significantly en-
hances the performance of both systems. Rosenberg et al. [16]
explore the use of multi-speaker speech synthesis to generate
natural-sounding speech capturing prosody, speaker, and style
variations, employing the generated data as an augmentation to
improve in-domain speech recognition. Chen et al. [17] tack-
les the challenge of limited acoustic diversity in synthesized
speech used for augmentation by integrating generative adver-
sarial networks (GANs) with multi-style training. Hu et al. [?]
and Huang et al. [18] explore strategies to mitigate discrepan-
cies between synthetic and real data distributions, such as fil-
tering out low-quality samples, to address issues like structured
noise and unrealistic speaking styles. Unlike these works, R2S
focuses on realigning speech representations to single-speaker
and noise-free speech representations, rather than generating di-
verse data that simulate the target domain.

Most related to our work, Meghanani et al. [19] propose
using features derived from clean (real) speech to guide the rep-
resentation learning of the corresponding augmented speech via
a Soft-DTW loss [20]. Experimental results show that SCORE
can effectively suppress undesired (perturbed) information and
enable better performance on content-related downstream tasks
such as speech recognition, phoneme recognition, and spo-
ken term discovery. In contrast to SCORE, we explore using
clean (synthetic) speech as the target representation for real
speech. Furthermore, we explore alternative methods to Soft-
DTW, which suffers from prohibitively high memory usage for
long sequences.

3. Method
3.1. Data preparation

Given a real speech datasets with transcripts D =

{(x(r)
i , yi)}Ni=1, we use a a text-to-speech model [21] to gen-

erate synthetic speech for each sample in D, resulting in triplets
D′ = {(x(r)

i , x
(s)
i = TTS(yi), yi)}Ni=1.

The system is structured into two main components: a lin-
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Figure 1: An architectural overview of the R2S pipeline. Real
speech is passed to a trainable encoder while synthetic speech
(with the same transcriptions) is passed to a frozen teacher en-
coder. Their extracted representations are then forwarded to
a domain classifier (with a Gradient Reversal Layer) to clas-
sify whether the input is real or synthetic speech. We also use
a frozen teacher model to guide the representations of the real
speech with a CTC-loss on the pre-computed discrete tokens of
corresponding synthetic speech. The decoder is frozen, while
the encoder is jointly optimized with the original Cross-entropy
loss for ASR, domain confusion loss, and the CTC-loss.

guistic frontend and an acoustic backend. The linguistic fron-
tend processes plain text and converts it into phonetic form
(grapheme to phoneme), and prosodic details. The processed
information is then relayed to the acoustic backend, which is
equipped with a transformer-based prosody model that esti-
mates phone-level fundamental frequency (F0) values and their
durations, a transformer-based spectral model that computes
frame-level mel-cepstral coefficients, along with F0 and period-
icity features. Then, a sparse WaveRNN-based neural vocoder
[21] synthesizes the final audio waveform. We utilize this TTS
pipeline to produce audio for each generated text domain, which
is then used to fine-tune ASR models. Since our goal is to con-
vert real speech into a clean and condition-invariant represen-
tation space, we use a single target speaker for all TTS speech
without any noise augmentation.

3.2. Base model

We use Whisper-base [1] as our backbone architecture, with
around 78M parameters. Whisper is a Seq2Seq Transformer
model [22] pre-trained on approximately 700K hours of weakly
supervised speech recognition data. The model has shown
strong generalizability with competitive performance across a
wide-range of public benchmarks in zero-shot settings without
the need for any fine-tuning. The model contains an Encoder
and a Decoder. Given input speech signal x, the encoder first
extracts hidden representations from x to produce H , then the
decoder auto-regressively predicts the probability distribution
of the next token yi given previously predicted tokens y<i for
the transcription. The model is trained with a cross-entropy loss
over the predicted probability distributions

LCE = −ΣN
i=1logP (yi|y<i, H) (1)

In this work, we use a frozen teacher encoder (EncT ) to ex-
tract synthetic speech representations to train a student encoder
(EncS) that processes real speech inputs. Both EncT and
EncS share the same initialization from the pre-trained Whis-
per model.



3.3. Adversarial Learning

The Gradient Reversal Layer (GRL) [23] is a commonly used
method for unsupervised domain adaptation to bridge the rep-
resentation gap between a source domain and a target domain.
During the forward pass, all information flowing through a GRL
remains unchanged, but in the backward pass, all gradients
passing through the GRL are reversed (from positive to nega-
tive, and vice versa). In this work, to encourage the encoder to
generate invariant features between real and synthetic speech,
we add GRL between the encoder and an MLP-based domain
classifier (real vs. synthetic speech). Both the encoder and the
domain classifier are jointly optimized with a Binary Cross En-
tropy loss

LDC = −ΣB
i=1logP (di|Hi) (2)

where B is the batch size, di ∈ {0, 1} is the domain labels,
and Hi is the utterance-level representations extracted from the
encoders for sample i.

3.4. Discrete tokens feature guidance

With adversarial learning, the domain classifier only relies on
a single representation vector for each sample, which may not
capture the full complexity and variability of real and synthetic
speech. To address this issue, we aim to further encourage the
encoder to learn more fine-grained information within the ex-
tracted synthetic speech representations, allowing the model to
better capture the nuances and variations.

The temporal misalignment between real and synthetic
samples poses a challenge for using traditional regression
functions such as Mean Square Error (MSE) to estimate the
synthetic speech representation given a real one. Recently, so-
lutions such as Soft Dynamic Time Warping (Soft-DTW) [20]
have been proposed for regression problems without temporal
alignment, but suffer from prohibitively high memory usage
for long sequences. Hence, we propose to first encode the
extracted synthetic features into discrete tokens using a
Residual Vector Quantization module [24], and use the CTC-
loss to guide the representation learning process for real speech.

3.4.1. Learning Residual-VQ.

Vector quantization (VQ) [25] discretizes high-dimensional
data by mapping it to a codebook of vectors, using Euclidean
distances to determine the closest entries in the codebook.
Zhigidour et al. [24] propose residual vector quantization (R-
VQ) to use multiple vector quantizers to recursively quantize
the residuals of a waveform, resulting in more refined quantized
embeddings. Specifically, the encoder feature z = EncS(x) ∈
RT×d is quantized w.r.t. a set of codebooks Z = {Zi}[i∈L]

where Zi ∈ RK×d according to

z(l)q = q(z(l−1)
q ) = {argminzk∈Zl ||z

(l−1)
q [t]− zk||)}t∈T

(3)
where l denotes the codebook layer, q denotes the quantization
function that map each element of an encoded sequence to the
nearest codebook entry, and T denotes the sequence length.

In this paper, we use the final layer quantization of R-VQ
as the pseudo-labels to guide the representation learning process
of real speech. To generate meaningful pseudo-labels, we first
train the R-VQ using only synthetic speech features. In particu-
lar, we place the R-VQ between the EncT and decoder layers,
and optimize the codebook entries (while freezing everything

else) with respect to a combination of the speech recognition
loss LCE and a commit loss [25].

LRV Q(Z) = LCE(Dec(zq), Y )+||sg[z]−zq||22+||z−sg[zq]||22
(4)

where zq is the final-layer quantized output of the encoder ex-
tracted feature z, Y is the ground-truth transcription and sg[.]
denotes the stopgradient operator. This pre-training stage al-
lows us to learn a codebook that effectively captures the under-
lying structure of the synthetic speech data, which is crucial for
generating high-quality discrete tokens.

3.4.2. Discrete token predictions.

We use the trained R-VQ to generate offline pseudo-labels for
the training state of EncS . We add a simple linear layer af-
ter EncS to map the feature dimension to the vocab size of the
codebook entries in R-VQ, and use a CTC loss to guide the
learning process of EncS to predict the sequences of discrete
pseudo-label tokens. The discrete token prediction loss LDTP

is formulated as Equation 5, where LX is the pseudo-labels gen-
erated by the last layer of R-VQ.

LDTP = ΣB
i=1LCTC(EncS(X), LX) (5)

Overall, the student encoder EncS is optimized with Equation
6, where λ1, λ2, λ3 are hyper-parameters controlling the trade-
offs between the three loss terms.

L = λ1LCE + λ2LDC + λ3LDTP (6)

4. Experiments
4.1. Datasets & Baselines

We evaluate R2S on three datasets: LibriSpeech [26],
Voxpopuli-English [27] (containing 15 accents), and VCTK
dataset [28] (containing multiple speakers speaking same con-
tents). We follow the official train/val/test splits for LibriSpeech
and Voxpopuli-English, and perform a speaker-independent
split for VCTK. The train sets contain 960 hours of audio from
2484 speakers (LibriSpeech), 543 hours of audio from 1313
speakers (Voxpopuli), and 44 hours from 109 speakers (VCTK).
We fine-tune Whisper-base on the training sets and evaluate on
the corresponding test sets.

We compare R2S with four baselines. FT-R: vanilla fine-
tuning Whisper on only real speech (original training sets), FT-
S: vanilla fine-tuning Whisper on only synthetic speech, FT-
[R+S]: vanilla fine-tuning Whisper on real and TTS speech
combined, and SCORE [19].

4.2. Implementation Details

We use Whisper-base as the pre-trained ASR model in this
study. As mentioned in Section 3, we only fine-tune the en-
coder of Whisper while freezing everything else to experiment
usefulness of aligning real and synthetic representations.

During training, we fine-tune the models with an AdamW
optimizer with lr = 1e−5 for 20 epochs with early stopping
and a batch size of 40. We set λ1 = 1.0, λ2 = 0.5, λ3 = 0.01
to balance the loss scales. For the Gradient Reversal Layer,
we also set the adaptation factor as in [23] to reduce the im-
pact of noisy signals from the domain discriminator in the early
training stage, where the discriminator is not well-trained. Our
Residual-VQ contains 16 independent codebooks; each code-
book contains 1024 entries with a dimension of 512. We use a
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Figure 2: Visualization of learned feature representations on the LibriSpeech test-other dataset using t-SNE [29]. Panel (a) compares
the representation spaces of real and synthetic speech between the original Whisper checkpoint and the adapted R2S model. Panels (b)
and (c) provide side-by-side comparisons of representations for 15 randomly sampled speaker identities from LibriSpeech test-other
for the original and R2S models, respectively. In panels (b) and (c), each color represents a distinct speaker.

LS Voxpopuli VCTK
Original 12.39 10.38 4.56
FT-R 10.84 10.03 4.84
FT-S 13.31 11.42 5.46
FT-[R+S] 10.91 10.05 4.98
SCORE [19] 10.78 10.22 4.74
FT[R+S]+GRL 10.52 9.77 4.50
FT[R+S]+CTC 10.39 9.59 4.42
FT[R+S]+GRL+CTC 10.32 9.50 4.38

Table 2: Performance comparison between R2S and baselines
on three speech recognition datasets.

linear warmup learning rate for 10% of the training process. We
use the greedy decoding algorithm with the default parameters
provided in the open-source Whisper implementation. For eval-
uation, we report the Word Error Rate (WER) metric without
punctuation. We report results averaged over 5 runs.
Choice of Target Speaker in TTS. We introduce a versatile
framework for synthetic data generation that operates indepen-
dently of the specific target speaker. In our experiments, we
fixed the target speaker to simplify the analysis and demon-
strate the maximum potential gains achievable when the en-
coder aligns real speech representations. This design choice
reflects the underlying aim of the study—to evaluate the frame-
work’s ability to produce speaker-invariant features, regardless
of the target speaker.

5. Results
5.1. Quantitative results

We provide the experimental results in Table 2. First, we ob-
serve that simply using the (clean) synthetic speech as an aug-
mentation or as the fine-tuning dataset does not result in per-
formance improvement. However, when using synthetic speech
as feature guidance, we can observe improvements. In partic-
ular, with GRL on a domain classifier between real and syn-
thetic speech, the model improves by 2.9% on the LibriSpeech
test-other, 2.6% on the Voxpopuli English test set, and 1.3%
on the VCTK dataset. With more fine-grained feature guidance
using the Discrete Token Prediction LDTP loss, the improve-
ment becomes more significant, with 4.1%, 4.4% and 3.1% on
LibriSpeech, Voxpopuli and VCTK respectively. Since the two
losses complement each other on the task of estimating the rep-

resentation of synthetic speech, fine-tuning the encoder on the
losses results in final improvements of 4.7%, 5.3%, and 3.9%
on the three evaluation datasets. The improvement provides
promising signals of using synthetic speech as guidance for the
acoustic modeling process.

5.2. Qualitative results

We visualize the mean-pooled embeddings by the original and
adapted Whisper models using t-SNE [29]. Figure 2a) shows
the projected embeddings for samples of LibriSpeech test-other.
We can observe that the R2S can effectively align the represen-
tations of real and synthetic speech. Since the motivation for
converting real to synthetic speech features is to remoce un-
desired information from the encoded representations such as
speaker identities or accents, we verify the hypothesis by vi-
sualizing the learned embeddings with speaker IDs in Figure
2b) and c) on randomly select 15 identities from LibriSpeech
test-other. We can see that the adapted model with R2S bet-
ter produces speaker-invariant features compared to the original
model. We also report a cluster quality metric, the Calinski-
Harabaz score [30], to quantify the quality of generated embed-
ding clusters concerning the speaker IDs. A lower DB index
suggests more cluster-invariant representations (worse cluster
quality). The CH-score is 23.08 for the original model (Figure
2b) and 19.83 for the adapted model (Figure 2c). We also ana-
lyzed the learned representations for accented speech from the
Voxpopuli dataset (accented English subset), but did not include
them in Fig. 2 due to limited space. Nevertheless, our model
achieves a lower CH score compared to the original Whisper
model (4.66 vs. 5.17), underscoring the effectiveness of R2S in
producing accent-invariant features.

6. Conclusion
We present the first study on leveraging synthetic speech to
guide the representation learning process of real speech for the
task of speech recognition. In particular, we propose R2S with a
Gradient Reversal Layer attached to a (real vs. synthetic) speech
classifier and a Residual-VQ module to generate pseudo-labels
from synthetic speech representations to help the encoder in
generating representations more similar to clean and invariant
synthetic speech. Experimental results with the Whisper model
on three datasets demonstrate the effectiveness of R2S in reduc-
ing the WER by 4− 5%. We qualitatively visualize the learned
representations to verify R2S can successfully produce more in-
variant features with respect to speaker attributes.
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